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Generative AI: 
Artificial Intelligence systems that are designed to generate new content—such as text, images, music, code, 
or data—rather than just making predictions or classifications.

Feature Generative AI Traditional Neural Networks

Primary Goal Generate new content Predict or classify existing input

Output Type Novel data samples (text, image, etc.) Labels, scores, or fixed outputs

Examples GPT, DALL·E, VAE, GANs, Diffusion models CNNs for classification, LSTMs for forecasting

Training Objective Learn data distribution to generate new samples Learn a function that maps inputs to correct outputs

Architecture Examples Transformers, GANs, VAEs, Diffusion Models CNNs, RNNs, LSTMs, MLPs

Use Cases Writing, drawing, designing, simulating Face recognition, speech recognition, forecasting

Creativity Yes — generates new content No — only analyzes/acts on input data

• Generative AI tries to model the data distribution so it can generate new samples from that learned distribution.
• Traditional neural networks aim to fit a function that maps inputs to correct outputs (e.g., image → label), often through 

supervised learning.
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Ø The first part provides different Generative AI algorithms, while the second part details the underlying neural 
network architectures used to construct these models. 

• Algorithms refer to the underlying methods or modeling approaches that define how data is generated. They capture the statistical 
patterns of data and use them to synthesize new content.  
Examples include:

• Autoregressive Models – generate outputs one step at a time (e.g., GPT for text)
• Variational Autoencoders (VAEs) – learn latent representations and reconstruct data
• Denoising Diffusion Models – generate data by gradually reversing noise
• Generative Adversarial Networks (GANs) – use a generator vs. discriminator game
• Normalizing Flows / ODE-based / SDE-based flows – model complex distributions using invertible transformations      

• Architectures refer to the specific neural network structures or building blocks used to implement those algorithms. They define how the 
model is organized—its layers, connections, and flow of information. Common architectures include:

• Transformers – widely used in text, image, and code generation tasks due to their powerful attention mechanism
• CNNs (Convolutional Neural Networks) – excel at spatial data like images 
• U-Net – a convolutional architecture especially useful in image and video generation (used in diffusion models)
• RNNs (Recurrent Neural Networks), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit)– process sequences, used in earlier 

generative models
• Diffusion Transformers (DiT), Vision Transformers (ViTs), Attention-Based U-Net, VQ-VAE, Graph Neural Networks – more specialized architectures 

depending on data type

Algorithms: what the model is trying to do (e.g., generate step-by-step, denoise, sample from latent space)
Architectures: how the model is physically structured to do it (e.g., using attention layers, convolutional blocks, etc.)

These algorithms define the type of generative process being modeled and how the probability distributions of data are learned or 
approximated.
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Ø Generative AI - Algorithms
• Flow Models
• Ordinary Differential Equation (ODE)-based Flow Models
• Denoising Diffusion Models (DDMs)
• Stochastic Differential Equation(SDE)-based Denoising Diffusion Models
• Autoencoders and Variational Autoencoders (VAEs) 
• Latent Space Diffusion Models
• Autoregressive Models
• Generative Adversarial Networks (GANs)

Topics:

Ø Generative AI - Architectures
• Multilayer Perceptrons (MLPs)
• Training and Loss Functions Types
• Backpropagation Algorithm, Stochastic Gradient Descent (SGD), and Adam Optimizer
• Common Training Issues, Regularization in Deep Learning, and Scaling Laws for Deep Learning
• Convolutional Neural Networks (CNNs) and PixelCNN
• U-Net Denoising Model
• Recurrent Neural Networks (RNNs), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit)
• Transformers: Self-Attention, Multi-Head Attention, and Cross-Attention
• Diffusion Transformers (DiTs), Vision Transformers (ViTs), and Attention-Based U-Nets
• Multimodal Models
• Foundation Models

5

Ashkan Jasour



66

Appendices:
• Key Differential Equations in Generative AI
• Fine-tuning Large Language Models 
• Deep Reinforcement Learning - Key Concepts and Summary

 – PG, VPG, PPO, DDPG, TD3, SAC
• Reinforcement Learning from Human Feedback (RLHF) and Imitation Learning
• Adversarial Training, Robustness in Language Models, and Language Models Evaluation
• Python Libraries for Generative AI 
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• Flow Models
• Likelihood-based Model: Explicitly models the probability density of the data
• Transforms noise (latent space) into data by learning neural-based invertible, differentiable function (flow)
• It leverages the Change of Variables Formula to transform probability densities when mapping between data and latent space
• Loss function: KL divergence (maximize the likelihood of the data under the learned distribution where the learned probability density is represented in 

terms of the learned function and the probability density of the latent noise distribution)
• ODE-based Flow Models

• Continuous-time version of the flow model
• It uses the neural ODE to construct the mapping between the latent noise and the data
• It leverages the Continuity Equation that governs the time-evolution of a probability distribution through an ODE
• Flow Matching: This method learns the velocity field that describes how data evolves over time
• Loss function: Measures the squared difference between the learned velocity field and sampled estimates of the true analytical probability flow field 

over time. For Gaussian vector field cases, this reduces to learning the data subtracted by noise.
• Denoising Diffusion Models

• Transforms noise into data iteratively by learning to predict and remove the noise
• It leverages discrete-time Langevin dynamics to iteratively refine noisy samples using the predicted noise, gradually denoising them to generate high-

quality samples. Loss function: Measures the squared difference between the actual noise and the predicted noise.
• SDE-based Denoising Diffusion Models

• Stochastic version of the ODE-based Flow model
• It uses the neural SDE to construct the mapping between the latent noise and the data
• It leverages the Fokker-Planck PDE that governs the time-evolution of a probability distribution through an SDE
• Score Matching: This method learns the score function, which is the gradient of the log-probability density. It points in the direction where the data 

distribution increases the most, guiding probability flow in generative models
• Loss function: Measures the squared difference between the learned score function and sampled estimates of the true analytical score function. For 

Gaussian vector field cases, this reduces to learning the noise that perturbed the data.

Ø Generative AI Algorithms - Overview
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• Variational Autoencoders (VAEs)
• Likelihood-based Model 
• Latent Space Representation: Maps data to a lower-dimensional latent space using a learned encoder and reconstructs it using a learned decoder.
• The encoder receives a data sample and outputs the mean and variance of the approximate posterior distribution (modeled as a Gaussian) over the 

latent space, given the observed data. The decoder takes a sampled latent vector from this distribution and reconstructs the data.
• Uses Variational Inference: Instead of directly optimizing the likelihood, it optimizes the Evidence Lower Bound (ELBO), which provides a tractable 

approximation of the log-likelihood. This results in two main loss components: Reconstruction Loss and Regularization Loss.
• Loss function: Reconstruction Loss which ensures that the reconstructed data closely matches the input by maximizing the log-likelihood of the data 

given the latent representation. Regularization Loss where uses KL Divergence to minimize the difference between the learned latent distribution and 
the known prior distribution (e.g., Normal), regularizing the latent space.

• Autoregressive Models
• Likelihood-based Model
• No Latent Variables: Unlike VAEs and Flow Models, autoregressive models directly model data without requiring a separate latent space. 
• Sequential Data Generation: Generates data one step at a time, where each new element depends on previously generated elements.
• Uses the Chain Rule of Probability that ensures that each output is conditioned on past values
• It learns the conditional probability distribution of the next token given the sequence of previously generated elements
• Loss function: Cross-entropy loss between the predicted and true next-token distributions, optimizing for maximum likelihood in sequential data 

generation.
• Generative Adversarial Networks (GANs)

• Implicit Generative Model: GANs are implicit generative models that learn to synthesize data resembling real-world samples without explicitly modeling 
likelihoods. 

• Adversarial Training: Consists of two neural networks—a Generator (G) and a Discriminator (D)—that compete against each other in a min-max game.
• Generator takes random noise as input and produces synthetic samples while Discriminator tries to distinguish real data from fake (generated) data.
• Loss Function: Uses binary cross-entropy loss, where the Discriminator is trained to distinguish real from fake samples, and the Generator is trained to 

fool the Discriminator by maximizing the probability of fake samples being classified as real.

Ø Generative AI Algorithms - Overview
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Flow Models

• Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B,”Normalizing flows for probabilistic modeling and inference”, Journal of 
Machine Learning Research, 22(57), 1-64, 2021. https://jmlr.org/papers/volume22/19-1028/19-1028.pdf 

• Pieter Abbeel , CS294-158-SP24 Deep Unsupervised Learning Spring, UC Berkeley, 2024, https://sites.google.com/view/berkeley-cs294-158-sp24/home
• Foster, David. Generative deep learning. " O'Reilly Media, Inc.", 2022.
• RealNVP: "Density Estimation using Real NVP", Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio, ICLR, 2017, https://arxiv.org/abs/1605.08803
• Glow: "Glow: Generative Flow with Invertible 1x1 Convolutions", Diederik P. Kingma, Prafulla Dhariwal, NeurIPS, 2018, https://arxiv.org/abs/1807.03039
• Flow++: "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design", Jonathan Ho, Xi Chen, Aravind Srinivas, Yan 

Duan, Pieter Abbeel, ICM, 2019, https://arxiv.org/abs/1902.00275
• FFJORD: "FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models", Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, 

David Duvenaud, ICLR, 2019, https://arxiv.org/abs/1810.01367 
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Flow Models: 

Invertible 
transformation

𝑓

𝑥 𝑧 = 𝑓(𝑥)Original data space with 
complex distribution

Embedding space with a simpler distribution 
that is easy to sample(e.g., Gaussian)

Ø Goal: Learn an Invertible transformation from data space (with complex distribution) to embedding space (with simple distribution, e.g., 
Gaussian)

• Hence, given the transformation 𝑓, we can sample embedding space (e.g., sample from Gaussian) and then transform it into a data 𝑥 = 𝑓"#(𝑧)
• We will learn the transformation using a neural network 𝑓$ with parameters 𝜃 such that 𝑥 = 𝑓$	"# 𝑧 ~𝑝$ 𝑥 	achieves the actual distrbuUon of 

the data	𝑝∗(𝑥); Hence samples of 𝑧 transformed by 𝑓$	"# 𝑧  will sample data distribution. 
Note: 𝑥 and 𝑧 have the same dimensions.

Ø Training: learn parameters 𝜃 to minimize the distance between 𝑝$ 𝑥 	(distribution of data parametrized with 𝜃) and actual distribution of 
the data 𝑝∗ 𝑥 	(KL divergence)

min	
$
KL	Divergence = max	

$
Liklihood	of	Samples

KL divergence: min
$
𝐷(𝑝∗| 𝑝$ = ∫"&

'&	 𝑝∗ 𝑥 log )
∗ *

)" * 𝑑𝑥 = E*~)∗ log
)∗ *
)" * = E)∗ log 𝑝∗ 𝑥 − E)∗ log 𝑝$ 𝑥 = −E*~)∗ log 𝑝$ 𝑥

 ≈ − #
,
∑-.#, log 𝑝$ 𝑥- = max

$
#
,
∑-.#, log 𝑝$ 𝑥-  :maximum likelihood

data samples

fixed

Ø Sampling: first sample 𝑧 then compute 𝑥 = 𝑓! 	"# 𝑧  
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Flow Models: 
Ø Data Parametric Distribution 𝒑𝜽 𝒙 	:To construct 𝑝$ 𝑥 	in terms of neural network	𝑓$,	we will use Change of Variables Formula.

• Change of Variables Formula 𝑓:ℝ → ℝ:

• Change of Many Variables Formula 𝑓:ℝ0	 → ℝ0:

𝑝$ 𝑥 = 𝑝1 𝑓$ 𝑥
𝜕𝑓$ 𝑥
𝜕𝑥

𝑝$ 𝑥 = 𝑝1 𝑓$ 𝑥 det
𝜕𝑓$ 𝑥
𝜕𝑥

Jacobian determinant

( obtained by 𝑧 = 𝑓! 𝑥 	 and	 conserva6on of probability 8
"
𝑝# 𝑥 𝑑𝑥 	= 8

$
𝑝% 𝑧 𝑑𝑧 	) 

Jacobian

Ø Training: max
$

1
𝑁
R
-.#

,

log 𝑝$ 𝑥- = max
$

1
𝑁
R
-.#

,

log 𝑝1 𝑓$ 𝑥- + log
𝜕𝑓$ 𝑥-
𝜕𝑥

• Assuming we have an expression for 𝑝$, this can be optimized with Stochastic Gradient Descent.

max
$

1
𝑁R
-.#

,

log 𝑝$ 𝑥- = max
$

1
𝑁R
-.#

,

log 𝑝1 𝑓$ 𝑥- + log 𝑑𝑒𝑡
𝜕𝑓$ 𝑥-
𝜕𝑥

• The Jacobian determinant must be computationally tractable to calculate and differentiate.

𝑓&
𝑥 𝑧 = 𝑓% ∘...∘𝑓# (𝑥)𝑓' 𝑓(

Ø Composition of Flows: to increase expressiveness

𝑥 = 𝑓#"# ∘...∘𝑓%"# (𝑧)

log 𝑝! 𝑥 = log 𝑝$ 𝑓% ∘...∘𝑓# (𝑥) +/
&'#

%

log 𝑑𝑒𝑡
𝜕𝑓& 𝑥
𝜕𝑓&"#

where 𝑓((𝑥) = 𝑥
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Ø Transformation Mapping 𝑓!(𝑥)
• 1-D Case: 𝑓:ℝ → ℝ Differentiable and invertible functions
• N-D case: 𝑓:ℝ)	 → ℝ)	Differentiable and invertible function + The Jacobian determinant must be easy to calculate and 

differentiate.
• Note that neural networks are, in general, not invertible. So, to construct  a neural mapping we can choose invertible 

functions whose parameters are produced by a neural network. While the neural network itself doesn't need to be 
invertible, the overall transformation is constructed to be invertible, e.g., in affine coupling layers, a neural network 
outputs the scale and translation parameters used in the transformation. 

1-D Example:

• We can define the flow as a parameterized CDF, e.g., CDF of mixture 
of Gaussians with unknown weights, means, and variances. These 
unknow parameters can be learned by neural networks.

The CDF is an invertible, differentiable map from data to [0, 1]; Hence, CDF turns any density into uniform 

CDF can turn any (smooth) distribution 𝑝(𝑥) into any (smooth) distribution 𝑝(𝑧)

CDF of 𝑥 𝑥 𝑧 = 𝑓 𝑥 ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1]

CDF of 𝑥 𝑥~𝑝(𝑥) [0,1] Invers of 
CDF of 𝑧 

𝑧~𝑝(𝑧)

CDF of Mixture of 
Gaussians 

Ø Examples of flow-based generative models: NICE, RealNVP, Glow, Flow++

Mixture of Gaussians 
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𝑧# = 𝑓!! 𝑥#
𝑧* = 𝑓!" 𝑥#, 𝑥*

⋮
𝑧) = 𝑓!# 𝑥#, 𝑥*, … , 𝑥)

The Jacobian is triangular, so its determinant is 
the product of diagonal entries

𝑥# = 𝑓!!
"# 𝑧#

𝑥* = 𝑓!"
"# 𝑧*; 𝑥#
⋮

𝑥) = 𝑓!#
"# 𝑧); 𝑥#, 𝑥*, … , 𝑥)"#

Invertible function of 𝑧#, 
𝑥$, … , 𝑥#%$ are parameters and can have arbitrary complexity 
(including any neural net) and no invertibility requirement 
(example in the next page )

𝑝 𝑥#, 𝑥*, … , 𝑥) = 𝑝 𝑧#)𝑝 𝑧* …𝑝(𝑧)
𝜕𝑧#(𝑥#)
𝜕𝑥#

𝜕𝑧*(𝑥#, 𝑥*)
𝜕𝑥*

…
𝜕𝑧)(𝑥#, 𝑥*, . . 𝑥))

𝜕𝑥)

log 𝑝 𝑥#, 𝑥*, … , 𝑥) = 𝑙𝑜𝑔𝑝 𝑧#) + 𝑙𝑜𝑔𝑝 𝑧* +⋯+ 𝑙𝑜𝑔𝑝(𝑧) + 𝑙𝑜𝑔
𝜕𝑧#(𝑥#)
𝜕𝑥#

+ 𝑙𝑜𝑔
𝜕𝑧*(𝑥#, 𝑥*)

𝜕𝑥*
+⋯+ 𝑙𝑜𝑔

𝜕𝑧)(𝑥#, 𝑥*, . . 𝑥))
𝜕𝑥)

𝑥#~𝑝!! 𝑥#
𝑥*~𝑝!! 𝑥* 𝑥#

⋮
𝑥)~𝑝!!(𝑥)|𝑥#, 𝑥*, … , 𝑥)"#)

n-D Example 1: Autoregressive  Flow Model

14

Ashkan JasourAshkan Jasour

Flow Models



𝑓$&

𝑓$'

𝑓$(

𝑥#

𝑥*

𝑥)

𝑧#~𝑈	([0,1])

𝑧*~𝑈	([0,1])

𝑧)~𝑈	([0,1])

⋮

𝑓!!: Mixture of Gaussian CDFs in 𝑥#
𝜃# = [𝑤##, 𝜇##, 𝜎##, … , 𝑤#+,𝜇#+ , 𝜎#+] 

𝑓!": Mixture of Gaussian CDFs in 𝑥*
𝑤*#, 𝜇*#, 𝜎*#, …𝑤*+, 𝜇*+, 𝜎*+ = 𝑁𝑁!"(𝑥#) 

𝑓!#: Mixture of Gaussian CDFs in 𝑥) 
𝑤)#, 𝜇)#, 𝜎)#, …𝑤)+𝜇)+, 𝜎)+ = 𝑁𝑁!#(𝑥#, 𝑥*, … , 𝑥)"#) 

⋮ ⋮

Autoregressive  Flow Modeln-D Example 1:

• We choose invertible functions (Mixture of Gaussian CDFs ) whose parameters are produced by a neural network.

𝑓!! : Mixture of 𝑚 Gaussian CDFs in 𝑥). The unknown parameters of the CDFs including 
𝑚	weights, means, and variances 𝑤)&, 𝜇)&, 𝜎)&, …𝑤)*𝜇)*, 𝜎)*  are produced by a neural 
network whose inputs are 𝑥&, 𝑥', … , 𝑥)+&.

𝑤)&, 𝜇)&, 𝜎)&, …𝑤)*𝜇)*, 𝜎)* 	= 𝑁𝑁!!(𝑥&, 𝑥', … , 𝑥)+&)
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Affine Coupling Layersn-D Example 2:

• Split the data dimensions in two parts: [𝑥#, … 𝑥- 	] and [𝑥-.#, … 𝑥)	]

𝑧#:- = 𝑥#:-
𝑧-.#:) = 𝑥-.#:)⊙exp(𝑠! 𝑥#:- ) + 𝑡!(𝑥#:-)

element-wise multiplication scale and translation parameters 
modeled with neural networks 

𝜕𝑧
𝜕𝑥 =

𝐼 0
𝜕𝑧-.#:)
𝜕𝑥#:-

𝑑𝑖𝑎𝑔(exp(𝑠! 𝑥#:- )) det
𝜕𝑧
𝜕𝑥 = 𝑑𝑖𝑎𝑔(exp(𝑠! 𝑥#:- ))

• Neural network outputs the scale and translation parameters used in the transformation. 

• Affine coupling layers split the input and only transform a part, making the Jacobian triangular and easy to invert.
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Model Key Idea Advantages Challenges

RealNVP (Real-valued Non-
Volume Preserving)

Uses affine coupling layers 
for invertibility.

Efficient forward and 
inverse pass. Works well for 
image generation.

Requires careful design of 
masking patterns.

Glow
Uses invertible 1x1 
convolutions instead of 
fixed masking patterns.

Improves expressiveness of 
transformations, easier to 
train.

Still limited in learning very 
complex distributions.

Flow++
Introduces mixture of 
logistic distributions and 
variational dequantization.

More powerful than 
RealNVP and Glow for 
images.

More computationally 
expensive.

FFJORD (Free-form Jacobian 
of Reversible Dynamics)

Uses continuous-time 
normalizing flows (Neural 
ODEs).

No need for discrete layers, 
can learn complex 
transformations.

Requires solving ODEs, 
which can be slow due to 
ODE solvers. 

Ø Architectures for Normalizing Flow models:

• RealNVP: "Density Estimation using Real NVP", Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio, ICLR 2017. Paper - https://arxiv.org/abs/1605.08803
• Glow: "Glow: Generative Flow with Invertible 1x1 Convolutions", Diederik P. Kingma, Prafulla Dhariwal, NeurIPS 2018. Paper - https://arxiv.org/abs/1807.03039
• Flow++: "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design", Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, Pieter Abbeel, ICML 

2019. Paper - https://arxiv.org/abs/1902.00275
• FFJORD: "FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models", Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, David Duvenaud, ICLR 2019. 

Paper - https://arxiv.org/abs/1810.01367 
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ODE & SDE-based Flow and Diffusion Models:
Flow and Score Matching

• Peter Holderrieth and Ezra Erives,“Generative AI With Stochastic Differential Equations” MIT, 6.S184/6.S975, IAP 2025, https://diffusion.csail.mit.edu/ 
• Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden, “Stochastic interpolants: A unifying framework for flows and diffusions”, arXiv preprint 

arXiv:2303.08797, 2023, https://arxiv.org/pdf/2303.08797 
• Karras, T., Aittala, M., Aila, T., & Laine, S. ,”Elucidating the design space of diffusion-based generative models”, Advances in neural information processing 

systems, 35, 26565-26577, 2022, https://arxiv.org/pdf/2206.00364 
• Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. ,” Score-based generative modeling through stochastic differential equations”, arXiv 

preprint arXiv:2011.13456, 2021,  https://arxiv.org/pdf/2011.13456 
• Yaron Lipman et al, “Flow matching for generative modeling”, arXiv preprint arXiv:2210.02747, 2022, https://arxiv.org/pdf/2210.02747 

18

Ashkan Jasour

https://diffusion.csail.mit.edu/
https://arxiv.org/pdf/2303.08797
https://arxiv.org/pdf/2206.00364
https://arxiv.org/pdf/2011.13456
https://arxiv.org/pdf/2210.02747


19

Ø ODE & SDE based Flow and Diffusion Models
• From Noise into Data: 

Construct an Ordinary Differential Equation (ODE) or a Stochastic 
Differential Equation (SDE) to transform samples from a simple probability 
distribution (e.g., Normal) into samples from a data probability distribution.

Ø Diffusion Model:

SDE:	𝑑𝑥0 = 𝑢0! 𝑥0 𝑑𝑡 + 𝜎0𝑑𝑊0
Initial state:	𝑥(~𝑝&)&0	
Goal:	𝑥#~𝑝-101
Simulation:	𝑥0.2 = 𝑥0 + ℎ𝑢0! 𝑥0 + ℎ𝜎0𝜖0

• 𝑢)* 𝑥) 	: Neural network with parameter 𝜃 to model the vector field (e.g., velocity field)
• 𝜎) ≥ 0: diffusion coefficient
• 𝑊) 	: Brownian motion stochastic process (Wiener process), 

Properties: starts from 0, continuous, Normal and independent increments , 
Brownian motion simulation 𝑊)+, = 𝑊) + ℎ𝜖)

• Simulanon to generate 𝑥$~𝑝-.). 	where	𝜖)~N(0, I/) and	ℎ	is step size.

Ø Flow Model:

ODE:	𝑑𝑥0/𝑑𝑡 = 𝑢0! 𝑥0
Initial state:	𝑥(~𝑝&)&0	
Goal:	𝑥#~𝑝-101
Simulation:	𝑥0.2 = 𝑥0 + ℎ𝑢0! 𝑥0

• 𝑢)* 𝑥) 	: Neural network with parameter 𝜃 to model the vector field (e.g., velocity field)

• Simulanon to generate 𝑥$~𝑝-.). 	where	ℎ	is step size.

• If the vector field is Lipschitz continuous (continuously differentiable with bounded derivatives) and the diffusion coefficient is continuous, then a unique 
solution to the SDE/ODE(𝜎)=0) exists. 

𝑝&)&0 𝑝-101

𝑥(

𝑥#
𝑡 = 0	 𝑡 = 1	
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Ø ODE-based Flow Model

• Flow Model:   ODE:-3$
-0
= 𝑢0! 𝑥0 ,	 Initial state:	𝑥(~𝑝&)&0	,	Goal:	𝑥#~𝑝-101

𝑥0~𝑝0 ,
𝑑𝑝0(𝑥)
𝑑𝑡 = −𝑑𝑖𝑣(	𝑝0 𝑥 𝑢0 𝑥 	)• Continuity Equation:

PDE that governs the time evolution of a probability distribution under the ODE dynamics, where div is divergence operator 
𝑑𝑖𝑣(𝑓) = ∑&

4
43%

𝑓(𝑥)

𝑝&)&0 𝑝-101

𝑝0(x)

𝑑𝑥0
𝑑𝑡

= 𝑢0 𝑥0 , 𝑥(~𝑝&)&0

𝑑𝑝0(𝑥)
𝑑𝑡 = −𝑑𝑖𝑣(	𝑝0 𝑥 𝑢0 𝑥 	)
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Ø ODE-based Flow Model - Training
To construct the neural vector field 𝑢0! 𝑥0 ,	we use available samples of the desired vector field, 
e.g., 𝑢0∗ 𝑥0|𝑧& , 𝑖 = 1, . . , 𝑁 where 𝑧#, … , 𝑧6	~	𝑝-101 	are the data samples.

𝑝&)&0 𝑧&• Conditional Probability Path 𝑝0(𝑥0|𝑧&): 
   Trajectory in the probability space from 𝑝&)&0 to Dirac delta distribution 𝛿$% 

• Conditional Vector field 𝑢0∗ 𝑥0|𝑧& : 
    ODE under which conditional probability path is achieved. 

• Marginal Probability Path 𝑝0(𝑥0):
Trajectory in the probability space from 𝑝&)&0 to  𝑝-101

𝑝&)&0 𝑝-101

• Marginal Vector field 𝑢0∗ 𝑥0 : ODE under which marginal probability path 
is achieved. 

𝑝&)&0 𝑝-101

𝑧&
𝑝0(𝑥0|𝑧&)

𝑑𝑥)
𝑑𝑡

= 𝑢)∗ 𝑥)|𝑧0 , 𝑥1~𝑝0#0) , 𝑥$ = 𝑧0

𝑝&)&0 𝑝-101

𝑝0(𝑥0)

𝑑𝑥)
𝑑𝑡

= 𝑢)∗ 𝑥) , 𝑥1~𝑝0#0) , 𝑥$~𝑝-.).

Ø Given the data samples 𝑧&, we can often derive a conditional probability path and the corresponding conditional vector field 
analytically. Hence, they will be utilized during the training phase.

𝑡 = 0	 𝑡 = 1	

Loss Function =𝔼0~8)&9 (,# ,	 $~;&'$',	 3~;$(3$|$)	 𝑢0
! 𝑥 − 𝑢0∗ 𝑥|𝑧

𝟐

Samples from different Conditional Probability Paths at different times 

Flow Matching:

22
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Ø Example: Gaussian-based Flow Model

• Gaussian Conditional Probability Path 

At each time t conditional probability path is a Gaussian distribution. 

• Gaussian Conditional Vector field:  𝑢0∗ 𝑥0|𝑧& = ̇𝛼0 −
Ȧ$
A$
𝛼0 𝑧& +

Ȧ$
A$
𝑥

• Path :	𝑥0 = 𝛼0𝑧& + 𝛽0𝜖   where	𝜖~𝑁 0, 𝐼 	, 𝑧&~𝑝-101
Random variable 𝑥0~ 𝑁 𝛼0𝑧& , 𝛽0*𝐼 .  This allows us to sample 𝑥0 along the conditional probability path for training phase.  

𝑝D 𝑥D 𝑧- = 𝑁(0, 𝐼)

𝑝# 𝑥# 𝑧- = 𝑁 𝑧-, 0 = 𝛿12

𝑧&
𝑥)~ 𝑁 𝛼)𝑧0 , 𝛽)3𝐼

𝑡 = 0	 𝑡 = 1	

Ø 𝜶𝒕 = 𝒕,	𝜷𝒕 = (𝟏 − 𝒕)

• Loss Function:

𝔼E~F0-G D,# ,	 1~)4565,	 *~, H612,I6'J 	 𝑢E$ 𝑥 − ̇𝛼E −
İ6
I6
𝛼E 𝑧- −

İ6
I6
𝑥

𝟐
= 𝔼E~F0-G D,# ,	 1~)4565,	 M~, D,J 	 𝑢E$(𝛼E𝑧 + 𝛽E𝜖) − ( ̇𝛼E𝑧 + �̇�E𝜖 )

𝟐

• 𝑝0(𝑥0|𝑧&): 𝑁 𝛼0𝑧& , 𝛽0*𝐼 , 
𝛼( = 0, 𝛼# = 1, e. g. , 𝛼0 = 𝑡

𝛽( = 1, 𝛽# = 0, e. g. , 𝛽0 = (1 − 𝑡)

Loss Function: 𝔼E~F0-G D,# ,	 1~)4565,	 M~, D,J 	 𝑢E$ 	𝑡𝑧 + 1 − 𝑡 𝜖 	 −	(𝑧 − 𝜖 )
𝟐

Ground-truth velocity that transforms noise into data

, e.g., State-of-the-art models: Stable Diffusion 3, Meta’s MovieGen

𝑡𝑧 + 1 − 𝑡 𝜖

𝜖~𝑁 0, 𝐼

𝑧~𝑝,-.-

𝑡 = 0

𝑡 = 1	

ØTraining:
Input: A dataset of samples 𝑧~𝑝,-.-,Output: neural network 𝑢.! 𝑥

1. for each mini-batch of data do
2.    Sample a data example 𝑧 from the dataset
3.    Sample a random time 𝑡~𝑈𝑛𝑖𝑓 0,1
4.    Sample noise 𝜖~𝑁 0, 𝐼
5.    Set 𝑥 = 𝑡𝑧 + (1 − 𝑡)𝜖 
6.    Compute loss: L(𝜃)= 𝔼 𝑢.! 𝑥 −	(𝑧 − 𝜖 )

𝟐
	

7.    Update the model parameters 𝜃 via gradient descent on L(𝜃)
8. end for

Noise schedulers: continuously differentiable, 
monotonic functions
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Ø Conditional (Guided) Vector Field

• Conditional Model:  𝑑𝑥0 = 𝒖𝒕𝜽 𝒙𝒕|𝒚 𝑑𝑡,	Initial state:	𝑥(~𝑝&)&0, Goal:	𝑥#~𝒑𝒅𝒂𝒕𝒂(. |𝒚)

where, 𝑦 is condition information such as prompt/text.
𝑝&)&0

𝑝-101 (. |𝒚)

𝑥( 𝑥# given 𝒚
𝑡 = 0	 𝑡 = 1	

Loss Function =𝔼!~#$%& ',) ,	(𝒛,𝒚)~𝒑𝒅𝒂𝒕𝒂(𝒛,𝒚), 0~1^(0^|3)	 𝑢!
4 𝑥|𝑦 − 𝑢!∗ 𝑥|𝑧

𝟐

We sample from (𝒛, 𝒚)~𝒑𝒅𝒂𝒕𝒂(𝒛, 𝒚), instead of 𝒛~𝒑𝒅𝒂𝒕𝒂 𝒛 .	

Ø Classifier-free Guidance: To improve the results, we will reinforce the effect of the conditioning variable y.

Guided vector field

o𝑢0∗ 𝒙𝒕|𝒚 = 	 (1 − 𝜔) 𝑢0∗ 𝑥0|∅ + 𝜔𝑢0∗ 𝑥0|𝑦• Classifier-free Guided Vector field: where 𝜔>1 is guidance scale 
Guided vector fieldUnguided vector field

• We use same neural network 𝑢0! 𝑥|𝑦 	to approximate 𝑢0∗ 𝑥0|∅  and 𝑢0∗ 𝑥0|𝑦   

Loss Function: 𝔼!~#$%& ',) , 𝒛,𝒚 ~𝒑𝒅𝒂𝒕𝒂 𝒛,𝒚 ,0~1^(0^|3)	 𝑢!
4 𝑥|𝑦 − 𝑢!∗ 𝑥|𝑧

𝟐
where 𝒚 could be ∅ with non-zero 

probability.

• Model: 𝑑𝑥0 = o𝑢0! 𝒙𝒕|𝒚 𝑑𝑡,	Initial state:	𝑥(~𝑝&)&0, 𝑥#~𝒑𝒅𝒂𝒕𝒂(. |𝒚)

24

• Generates two predictions: one conditioned on the prompt and one unconditioned.
• Combines them to amplify alignment with conditioning variable y without needing a separate classifier. 
• Linear Combination with the guidance scale.
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Score Matching
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Ø SDE-based Diffusion Model

• Diffusion Model:  SDE:	𝑑𝑥0 = 𝑢0! 𝑥0 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	Initial state:	𝑥(~𝑝&)&0

𝑥0~𝑝0 ,
𝜕𝑝0(𝑥)
𝜕𝑡 = −𝑑𝑖𝑣 	𝑝0 𝑥 𝑢0 𝑥 	 +

𝜎0*

2 Δ𝑝0(𝑥)• Fokker-Planck Equation:

PDE that governs the time evolution of probability distribution through the SDE, where div is the divergence operator 𝑑𝑖𝑣(𝑓) =
∑&

4
43%

𝑓(𝑥) and Δ is Laplacian operator	Δ𝑓 = ∑&
4"

4"3%
𝑓(𝑥)

• Denoising Diffusion Model:  𝑑𝑥0 = 𝑢0! 𝑥0 + F$"

*
∇3 log 𝑝0(𝑥) 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	Initial state:	𝑥(~𝑝&)&0	,	Goal:	𝑥#~𝑝-101

• In SDE	𝑑𝑥0 = 𝑢0! 𝑥0 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	noise impact increases by time.
• To be able to decrease the noise impact and transform initial noise to data, we work with the Denoising Diffusion Model.

• In the  Denoising Diffusion Model,∇3is gradient and 𝑠0 𝑥0 =	∇3 log 𝑝0(𝑥) =
∇(;$(3)
;$(3)

 is the score function which pushes 
samples toward the real data. The score function gives a normalized gradient, pointing in the direction where the density 
increases the fastest.

Example: 𝑝0 𝑥 = #
*GF"

𝑒("
()* "

"+" ), 	 𝑠0 𝑥0 =	∇3 log 𝑝0(𝑥) = ∇3 − 3"H "

*F"
= − 3"H

F"
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Ø SDE-based Diffusion Model - Training

We construct the neural vector field 𝑢0! 𝑥0 	and neural score function 𝑠0! 𝑥0 .  We utilize available samples of the desired 
vector field, e.g., 𝑢0∗ 𝑥0|𝑧& , 𝑖 = 1, . . , 𝑁 and score function 𝑠0∗ 𝑥0|𝑧& = ∇3 log 𝑝0(𝑥|𝑧&)where 𝑧#, … , 𝑧6	~	𝑝-101 	are the data 
samples.

Loss Function: 𝔼0~8)&9 (,# ,	 $~;&'$',	 3~;$(3$|$)	 𝑠0
! 𝑥 − 𝑠0∗ 𝑥|𝑧

𝟐

Samples from different Conditional Probability Paths at different times 

Score Matching:

𝑑𝑥0 = 𝑢0! 𝑥0 +
𝜎0*

2 𝑠0! 𝑥0 𝑑𝑡 + 𝜎0𝑑𝑊0

Conditional Probability Path 

• We can often express 𝑢0! 𝑥0  and 𝑠0! 𝑥0  in one single neural network with two outputs.
For Gaussian probability path, we don’t need to train them separately as they can be converted into one another.
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Ø Example: Gaussian-based Diffusion Model
• Gaussian Conditional Probability Path 

• Gaussian Conditional Vector field:  𝑢0∗ 𝑥0|𝑧& = ̇𝛼0 −
Ȧ$
A$
𝛼0 𝑧& +

Ȧ$
A$
𝑥

• Path :𝑥0~ 𝑁 𝛼0𝑧& , 𝛽0*𝐼 , 𝑥0 = 𝛼0𝑧& + 𝛽0𝜖   where	𝜖~𝑁 0, 𝐼 	, 𝑧&~𝑝-101

𝑝0 𝑥0 𝑧& = 𝑁 𝛼0𝑧& , 𝛽0*𝐼

• Score Function: 𝑠0 𝑥0|𝑧 =	∇3 log 𝑝0(𝑥) = ∇3 log𝑁 𝛼0𝑧, 𝛽0*𝐼 = − 3"I$$
A"

• Loss Function: 𝔼E~F0-G D,# ,	 1~)4565,	 *~, H612,I6
'J 	 𝑠E$ 𝑥 + *"H61

I'
𝟐

=𝔼E~F0-G D,# ,	 1~)4565,	 M~, D,J 𝑠E$ 𝛼E𝑧 + 𝛽E𝜖 + 𝜖/𝛽E
𝟐

 = 𝔼!~#$%& ',) ,	 3~1_`^`,	 7~8 ',9
)
:^a

𝛽!𝑠!4 𝛼!𝑧 + 𝛽!𝜖 + 𝜖
𝟐

𝒖𝒕∗ 𝒙𝒕|𝒛𝒊 = 𝛽0*
̇𝛼0
𝛼0
− �̇�0𝛽0 𝒔𝒕∗ 𝒙𝒕|𝒛 +

̇𝛼0
𝛼0
𝑥

Numerically unstable for 𝛽)  close to 0
(due to division in loss) 

• Noise Predictor-based Loss Function: Drop the constant #
A$"

                          𝔼!~#$%& ',) ,	 3~1_`^`,	 7~8 ',9 𝜖!4 𝛼!𝑧 + 𝛽!𝜖 − 𝜖
𝟐
	

where	𝜖!4 𝑥! = −𝛽!𝑠!4 𝑥! .
• 𝜖0! 𝑥0 	learns to predict the noise 𝜖 that corrupted a data point 𝑧.

ØTraining:
Input: A dataset of samples 𝑧~𝑝,-.-	

     Output: score neural network 𝑠.! 𝑥  or noise predictor 𝜖.! 𝑥  
1. for each mini-batch of data do
2.    Sample a data example 𝑧 from the dataset
3.    Sample a random time 𝑡~𝑈𝑛𝑖𝑓 0,1
4.    Sample noise 𝜖~𝑁 0, 𝐼
5.    Set 𝑥 = 𝑡𝑧 + (1 − 𝑡)𝜖 

6.    Compute loss: L(𝜃)= 𝔼 𝑠.! 𝑥. + 0 
1"

𝟐
	 or 𝔼 𝜖.! 𝑥. − 𝜖

𝟐

7.    Update the model parameters 𝜃 via gradient descent on L(𝜃)
8. end for
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Ø Conditional (Guided) Score Function

• Conditional Model: d𝑥0 = 𝑢0! 𝑥0|𝑦 + F$"

*
𝑠0! 𝑥|𝑦 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	Initial state:	𝑥(~𝑝&)&0	, Goal:	𝑥#~𝒑𝒅𝒂𝒕𝒂(. |𝒚)

where, 𝑦 is condition information such as prompt/text.

We sample from (𝒛, 𝒚)~𝒑𝒅𝒂𝒕𝒂(𝒛, 𝒚), instead of 𝒛~𝒑𝒅𝒂𝒕𝒂 𝒛 .	

Ø Classifier-free Guidance: To improve the results, we will reinforce the effect of the conditioning variable y.

Guided vector field

o𝒔𝒕∗ 𝒙𝒕|𝒚 = 	 (1 − 𝜔) 𝑠0∗ 𝑥0|∅ + 𝜔𝑠0∗ 𝑥0|𝑦• Classifier-free Guided Vector field: where 𝜔>1 is guidance scale 

Guided score field
Unguided 
Guided Score Function

• We use same neural network 𝑠0! 𝑥|𝑦 	to approximate 𝑠0∗ 𝑥0|∅  and 𝑠0∗ 𝑥0|𝑦   

Loss Function: 𝔼!~#$%& ',) ,	 𝒛,𝒚 ~𝒑𝒅𝒂𝒕𝒂 𝒛,𝒚 ,0~1^(0^|3)	 𝑠!
4 𝑥|𝑦 − 𝑠!∗ 𝑥|𝑧

𝟐
, where 𝑦 could be ∅ with non-zero 

probability.

• Model: d𝑥0 = o𝑢0! 𝑥0|𝑦 + F$"

*
�̃�0! 𝑥|𝑦 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	Initial state:	𝑥(~𝑝&)&0	, Goal:	𝑥#~𝒑𝒅𝒂𝒕𝒂(. |𝒚)

Loss Function =𝔼0~8)&9 (,# ,(𝒛,𝒚)~𝒑𝒅𝒂𝒕𝒂(𝒛,𝒚), 3~;$(3$|$)	 𝑠0
! 𝑥|𝑦 − 𝑠0∗ 𝑥|𝑧

𝟐

Guided score function
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• Flow Model:   ODE:-3$
-0
= 𝑢0! 𝑥0 ,	 Initial state:	𝑥(~𝑝&)&0	,	𝑥#~𝑝-101

𝑥0~𝑝0 ,
𝑑𝑝0(𝑥)
𝑑𝑡 = −𝑑𝑖𝑣(	𝑝0 𝑥 𝑢0 𝑥 	)• Continuity Equation:

PDE that governs the time evolution of probability distribution through the ODE, where div is divergence operator 𝑑𝑖𝑣(𝑓) = ∑-
c
c*2

𝑓(𝑥)

• Diffusion Model:  SDE:	𝑑𝑥0 = 𝑢0! 𝑥0 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	Initial state:	𝑥(~𝑝&)&0

𝑥0~𝑝0 ,
𝜕𝑝0(𝑥)
𝜕𝑡 = −𝑑𝑖𝑣 	𝑝0 𝑥 𝑢0 𝑥 	 +

𝜎0*

2 Δ𝑝0(𝑥)• Fokker-Planck Equation (Forward Kolmogorov Eq):

PDE that governs the time-evolution of probability distribution through the SDE, where Δ is Laplacian operator	Δ𝑓 = ∑-
c'

c'*2
𝑓(𝑥)

• Langevin dynamics: special case of denoising diffusion model where 𝑢0! 𝑥0 = 0

• Denoising Diffusion Model:  𝑑𝑥0 = 𝑢0! 𝑥0 + F$"

*
∇3 log 𝑝0(𝑥) 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	Initial state:	𝑥(~𝑝&)&0	,	𝑥#~𝑝-101

𝑑𝑥0 =
𝜎0*

2 ∇3 log 𝑝(𝑥) 𝑑𝑡 + 𝜎0𝑑𝑊0

𝑝(𝑥) is a stationary distribution of Langevin dynamics, 𝑥(~𝑝 𝑥 , 𝑥N~𝑝 𝑥 	𝑡 ≥ 0	 (The probability distribution remains 
stationary over time 𝑝0(𝑥)= 𝑝(𝑥) )

If 𝑥(~o𝑝( 𝑥 ≠ 𝑝 𝑥 , 𝑥N~o𝑝0 𝑥 → 𝑝(𝑥)

Ø Key Differential Equations

30

: Distribution of 𝑥7 converges to 𝑝(𝑥) 
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Denoising Diffusion Models (DDM)
Discrete-Time Formulation

• Ho, J., Jain, A., & Abbeel, P., “Denoising diffusion probabilistic models”, Advances in neural information processing systems”, 33, 6840-6851, 2020 
https://arxiv.org/pdf/2006.11239 

• Pieter Abbeel , CS294-158-SP24 Deep Unsupervised Learning Spring, UC Berkeley, 2024, https://sites.google.com/view/berkeley-cs294-158-sp24/home
• Foster, David. Generative deep learning. " O'Reilly Media, Inc.", 2022.
• Ho, J., Jain, A., & Abbeel, P., "Denoising Diffusion Probabilistic Models", NeurIPS 2020,  https://arxiv.org/abs/2006.11239
• Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. , “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR, 2022, 

https://arxiv.org/abs/2112.10752
• Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., & Salimans, T. , “Cascaded diffusion models for high fidelity image generation”, The Journal of Machine 

Learning Research 23.1, 2249-2281, 2022,  https://arxiv.org/abs/2106.15282 
• Saharia, Chitwan, et al. , “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, ICML, 2022, https://arxiv.org/abs/2205.11487
• Peebles, W., & Xie, S. ,”Scalable Diffusion Models with Transformers", Proceedings of the IEEE/CVF international conference on computer vision, 2023 

https://arxiv.org/abs/2212.09748
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𝑥x 𝑥yz{ 𝑥y 𝑥|

Denoising Process

• Goal: Transform noise into data

NN
𝑥y
𝑡

Estimated
 Noise 

Denoising 
Process

𝑥y
𝑥yz{For 𝑡 = 𝑇,… , 1

• Transform Noise 𝑥O  into Data 𝑥(:

• Train a neural network to estimate the noise

Denoising Diffusion Models
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• Forward (noising) Process: We will train a neural net to learn the noise. 

𝑞 𝑥a 𝑥abc = 𝑁 1 − 𝛽y𝑥yz{, 𝛽y𝐼 , 𝑡 = 𝑇,… , 1 𝑥! = 1 − 𝛽!𝑥!;) + 𝛽!𝜖!;) , 𝜖!;)~𝑁(0, 𝐼)

• Adds a small amount of Gaussian noise with variance 𝛽0 to data 𝑥0"#
• We also scale input data 𝑥0"# to ensure that the variance of the output data 𝑥0 remains constant over time, e.g., if we 

normalize the original data 𝑥( to have zero mean and unit variance, then 𝑥O  will approximate a standard Gaussian 
distribution for large enough 𝑇,  i.e., 𝑉𝑎𝑟 𝑥0 = 1 − 𝛽0 𝑉𝑎𝑟 𝑥0"# + 𝛽0𝑉𝑎𝑟 𝜖0"# = 1

𝑞 𝑥! 𝑥' = 𝑁 𝛼!𝑥', 𝜎!<𝐼 	, 	diffusion schedules: 𝛼! = 9𝛼! = Π%=)! (1 − 𝛽!), 𝜎! = 1 − 9𝛼! = 1 − Π%=)! (1 − 𝛽!)

𝑥! = 𝛼!𝑥' + 𝜎!𝜖, 𝜖~𝑁(0, 𝐼)

• We can jump straight from data 𝑥( to noisy version of data 𝑥0 

Ø Training: Given noisy version of data 𝑥0 and time step 𝑡, neural network will 
estimate noise 𝜖 (the total amount of the noise that has been added to a 
given noisy data at time 𝑡,	not just the noise that was added at the last time 
step of the noising process 𝜖0"#)

NN
𝑥y
𝑡

𝜖

Training:
0. Output: neural network 𝜖	!
1. repeat
2.    Sample a data example 𝑥3	from the dataset
3.    Sample a random time 𝑡~𝑈𝑛𝑖𝑓({1, … , 𝑇})
4. Sample noise 𝜖~𝑁 0, 𝐼
5. Construct noisy data 𝑥. = 𝛼.𝑥3 + 𝜎.𝜖
6. Compute loss: L(𝜃)= 𝜖 − 𝜖	!(𝑥., 𝑡) 𝟐	
7.    Update the model parameters 𝜃 via gradient descent on L(𝜃)
8. until converged

For diffusion schedules, instead of linear schedules where 𝛽0 increases linearly with 𝑡 (e.g., 𝛽#=0.0001 to 𝛽O=0.02), 
cosine schedules can also be used, e.g., 𝑥E = cos(hi

E
j)𝑥D + 𝑠𝑖𝑛(

h
i
E
j)𝜖 
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• Denoising/Sampling Process and Sampling: Given a trained neural network that estimates noise, we can transform noise 
into data

NN
𝑥y
𝑡

Estimated
 noise 

Denoising 
Process

𝑥y
𝑥yz{

𝜖

𝑥x 𝑥yz{ 𝑥y

(1)Estimate the noise 𝜖 from 𝑥0using the model
and use it to estimate 𝑥( 

𝑥' =
𝑥! − 1 − 9𝛼!𝜖4(𝑥!, 𝑡)

9𝛼!

(2)Use the estimated noise 𝜖 to estimate 𝑥0"# 

For 𝑡 = 𝑇,… , 1

𝑥!;) = 9𝛼!;)𝑥' + 1 − 9𝛼!;) − 𝑐!<𝜖4 𝑥!, 𝑡 + 𝑐!𝑧!
To make the sampling process random, we can add 
Gaussian noise 𝑐0𝑧0 with the factor 𝑐0.

Sampling:
0. Output: data 𝑥(
1. Sample noise 𝑥O~𝑁 0, 𝐼
2. For 𝑡 = 𝑇,… , 1	do 
3.    Sample noise 𝑧0~𝑁 0, 𝐼  if 𝑡>1, else 𝑧0 = 0
4. Langevin Sampling
  𝑥E"# = g𝛼E"#

*6" #"kH6M"(*6,E)
kH6

+ 1 − g𝛼E"# − 𝑐Ei𝜖$ 𝑥E, 𝑡 + 𝑐E𝑧E
5. end for
6. return 𝑥(
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Ø Similar to the SDE based diffusion model, we can show that learning noise 𝜖4 approximates the score function 
∇0 log 𝑝!(𝑥). 

Ø Because of Gaussian noise assumption, we need many diffusion steps
• The forward and backward process are Gaussian, only for small step sizes.
• The data distribution is non-gaussian, thus, the noise required to transform the data into a normal 

distribution is inherently non-Gaussian

• Hence, to reduce the diffusion steps, we need to be able to work with non-Gaussian noises.

𝑥O = 𝛼0𝑥( + 𝜎0𝜖

data ~ non-Gaussian 
noisy image ~ normal distribution noise ~ non-Gaussian 

Ø Similar to the SDE based diffusion model, we can leverage Classifier-free Guidance to improve the results.
 ̃𝜖! = (1 − 𝜔)𝜖! 𝑥0 + 𝜔𝜖! 𝑥0 , 𝑦  where 𝑦 is conditioning (guidance) information and 𝜔 is guidance strength
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Ø Architectures for Diffusion Models:

Model Key Idea Advantages Challenges

U-Net
CNN-based architecture with an 
encoder-decoder structure for 
denoising.

Efficient feature extraction, 
widely used in diffusion models 
(DDPM, Stable Diffusion).

Limited ability to capture global 
dependencies.

Latent Diffusion
Performs diffusion in a 
compressed latent space using a 
VAE encoder-decoder.

Reduces computational cost, 
enables high-resolution image 
generation.

Requires a strong pre-trained 
VAE, potential loss of fine 
details.

Hierarchical Generation
Generates a low-resolution 
image first, then refines details 
progressively.

Improves quality and scalability, 
used in text-to-image models 
like Imagen & DALL·E 2.

More complex training pipeline, 
requires multiple models.

Transformers in Diffusion
Uses self-attention instead of 
CNNs for denoising and feature 
extraction.

Captures long-range 
dependencies, better for multi-
modal tasks (text-to-image).

High memory usage, slower 
inference compared to CNN-
based U-Nets.

• Ho, J., Jain, A., & Abbeel, P., "Denoising Diffusion Probabilistic Models", NeurIPS 2020,  https://arxiv.org/abs/2006.11239
• Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. , “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR, 2022, 

https://arxiv.org/abs/2112.10752
• Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., & Salimans, T. , “Cascaded diffusion models for high fidelity image generation”, The Journal of Machine Learning 

Research 23.1, 2249-2281, 2022,  https://arxiv.org/abs/2106.15282 
• Saharia, Chitwan, et al. , “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, ICML, 2022, https://arxiv.org/abs/2205.11487
• Peebles, W., & Xie, S. ,”Scalable Diffusion Models with Transformers", Proceedings of the IEEE/CVF international conference on computer vision, 2023 

https://arxiv.org/abs/2212.09748
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Ø Diffusion Models for Robotic Systems:

37

• In robotics models based on diffusion, the same principle applies, but instead of denoising an image, the model denoises a robot 
trajectory which is a sequence of states or actions over time.

Standard Diffusion Model: Noisy Image →	 Clean Image

Robotic Diffusion Model: Noisy robot trajectory →	 Clean (successful) robot trajectory 
Example:
• At each timestep: where the robot arm is (joint positions), what it should do (move forward, close gripper), etc.
• A full sequence is like: 𝑥1, 𝑢1 , 𝑥$, 𝑢$ , 𝑥3, 𝑢3 , … , where 𝑥 = robot state, 𝑢 = action
• Instead of pixels, each “pixel” is now a robot’s pose, velocity, or action.

• Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, Shuran Song, 
“Diffusion Policy: Visuomotor Policy Learning via Action Diffusion”, The International Journal of Robotics Research 
(IJRR), 2024, arXiv:2303.04137v5,  https://arxiv.org/pdf/2303.04137v5 , https://diffusion-policy.cs.columbia.edu/ 

• Briden, J., Johnson, B. J., Linares, R., & Cauligi, A., “Diffusion Policies for Generative Modeling of Spacecraft Trajectories”, 
In AIAA SCITECH 2025 Forum, 2025, https://arxiv.org/pdf/2501.00915 

• Janner, Michael, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. 
"Planning with diffusion for flexible behavior synthesis.”, 2022, 
arXiv:2205.09991, https://arxiv.org/pdf/2205.09991 .
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Autoencoders and Variational Autoencoders (VAEs) 

• Kingma, D. P., & Welling, M. ,”Auto-Encoding Variational Bayes”, In Proceedings of the 2nd International Conference on Learning Representations (ICLR), 2014,  
arXiv preprint arXiv:1312.6114, https://arxiv.org/pdf/1312.6114 

• Pieter Abbeel , CS294-158-SP24 Deep Unsupervised Learning Spring, UC Berkeley, 2024, https://sites.google.com/view/berkeley-cs294-158-sp24/home
• Foster, David. Generative deep learning. " O'Reilly Media, Inc.", 2022.
• Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B., “High-resolution image synthesis with latent diffusion models”, In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), 2022. arXiv:2112.10752, https://arxiv.org/pdf/2112.10752 
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𝒛Encoder Decoder𝒙 D𝒙≈𝒙

Lower-dimensional embedding space (latent space)

Higher-dimensional 
input data

Ø Autoencoders: 

Ø Motivating Example:
• Input space: circle images (pixel space)
• Embedding space: 3D dimensional space 𝒛 = [𝒄𝒙, 𝒄𝒚, 𝒓] where encodes the center coordinates and radius of the circles. Encoder 

and decoder is trained to learn the mapping (e.g., 𝑓 = 𝑥 − 𝑐* i + 𝑦 − 𝑐n
i − 𝑟i )  to transform the circle images into 3D 

space of 𝒛 and back to the original pixel space.
• To generate a new circle image, sample any point in 𝒛-space and decode it back to the image space using the decoder.

a neural network that is trained to perform the task of encoding and decoding such that the output from the process is as 
close to the original input as possible.   

Embedding Space (Latent Space): Low dimensional vector space that models the data (captures simpler representation of 
data). Encoder is trained to map the input data to a point (lower-dimensional) in the embedding space. Decoder is trained to 
map the point in the embedding space to the data space. In sampling phase, we simply pick any point in the embedding space 
and transform it into the original data space using the decoder.

Training: Find the parameters of the 
neural networks to minimize the 
difference between input and 
output data. 

𝒛 = 𝑵𝑵𝜽𝑬(𝒙) �𝒙 = 𝑵𝑵𝜽𝑫(𝒛)
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Ø Variational Autoencoders (VAEs): 
• Key Issues with Standard Autoencoder:

• Discontinuous and Unstructured Latent Space: In a standard autoencoder, the encoder maps each input 𝑥 to a single 
fixed point 𝑧 in the latent space. Since there's no constraint on the structure of 𝑧, different input data points can be 
scattered randomly in latent space, leading to gaps between encoded data points. When we attempt to generate new 
samples by interpolating in latent space, the decoder may receive unfamiliar latent representations, producing 
unrealistic outputs.
Moreover, due to lack of structure, the decoder may not generalize well if latent space representations of similar inputs 
are far apart (closeness in the latent space should imply closeness in the data space).

• No Stochastic Sampling: Prevents uncertainty modeling and limits generative capability.

• Overfitting and Lack of Generalization: Standard autoencoders can easily overfit to the training data, memorizing input 
features rather than learning meaningful latent representations.

• VAE Solution: 
• Instead of mapping each 𝑥 to a single 𝑧, VAE maps it to a distribution 𝑞 ( 𝑧 ∣ 𝑥 ) in the latent space. The latent space is 

continuous and smooth, allowing meaningful interpolation and sample generation. 
• Probabilistic Encoding and Decoding
• Latent Space Regularization (KL Divergence): Prevents the model from memorizing data by constraining the latent 

distribution to match 𝑁 ( 0 , 𝐼 ) improving generalization and encourages a structured latent space

• Since VAEs learn distributions rather than fixed mappings, they generalize better to unseen data and avoid overfitting.
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Ø Variational Autoencoder (VAE): 

Encoder Decoder𝒙 D𝒙~𝒑𝜽 𝒙 𝒛
𝒒𝝓 𝒛 𝒙

𝒑𝜽 𝒙 𝒛 = 𝑵(𝝁𝜽 𝒛 , 𝝈𝜽𝟐(𝒛))𝒒𝝓 𝒛 𝒙 = 𝑵(𝝁𝝓 𝒙 , 𝝈𝝓𝟐 (𝒙))

𝒑𝜽 𝒙 𝒛
𝒛~𝒒𝝓 𝒛 𝒙

𝑥
Pixel space 2D latent space

𝑧*

𝑧#

Encode

𝑥
Pixel space

2D latent space

Encode

𝑧#𝑁(𝜇#, 𝜎#)
𝑧*𝑁(𝜇*, 𝜎*)

Ø Variational Autoencoder (VAE): Ø Autoencoder:

𝒒𝝓 𝒛 𝒙 = 𝑵([𝝁𝟏, 𝝁𝟐], 𝝈𝟏, 𝝈𝟐 𝑰𝟐)
In latent space, all dimensions are independent.

 (restrictive — ignores correlations between data dimensions)

• VAE: Instead of mapping each 𝑥 to a single 𝑧, VAE maps it to a distribution 𝑞 ( 𝑧 ∣ 𝑥 ) in the latent space. The latent space is 
continuous and smooth, allowing meaningful interpolation and sample generation. 
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Ø Variational Autoencoder (VAE): 

Encoder Decoder𝒙 D𝒙~𝒑𝜽 𝒙 𝒛
𝒒𝝓 𝒛 𝒙

𝒑𝜽 𝒙 𝒛 = 𝑵(𝝁𝜽 𝒛 , 𝝈𝜽𝟐(𝒛))𝒒𝝓 𝒛 𝒙 = 𝑵(𝝁𝝓 𝒙 , 𝝈𝝓𝟐 (𝒙))

𝒑𝜽 𝒙 𝒛
𝒛~𝒒𝝓 𝒛 𝒙

• Loss Function: E3~;&'$'[𝑙𝑜𝑔𝑝(𝑥)]≈ −
#
6
∑&'#6 log 𝑝! 𝑥&  maximum likelihood of data

Since directly maximizing log 𝑝 (𝑥) is difficult, we instead maximize a lower bound on log 𝑝 (𝑥), called the Evidence Lower Bound (ELBO):

𝑙𝑜𝑔𝑝$ 𝑥 = log ∫ 𝑝$ 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 , compuUng this integral is intractable because it requires summing over all possible latent variables.

log 𝑝! 𝑥 ≥ ER($|3) 𝑙𝑜𝑔𝑝! 𝑥 𝑧 − 𝐾𝐿	(𝑞! 𝑧 𝑥 ||𝑝(𝑧))
Reconstruction loss: Measures how well 
the decoder reconstructs 𝑥 from latent 𝑧 

Regularization: Regularizes 𝑞 ( 𝑧 ∣ 𝑥 ) to be close to 𝑝 ( 𝑧 ) (known 
distribution e.g., N(0,I)); Encourages a structured latent space.

Loss Function ∶ −ER1($|3) 𝑙𝑜𝑔𝑝! 𝑥 𝑧 + 𝐾𝐿	(𝑞! 𝑧 𝑥 ||𝑝(𝑧))
Reconstruction loss Regularization
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Ø Variational Autoencoder (VAE): 

1. Sampling z: 𝒛~𝒒𝝓 𝒛 𝒙 = 𝑵(𝝁𝝓 𝒙 , 𝝈𝝓𝟐 (𝒙))
 For each data point 𝒙, produce a latent distribution 𝒒𝝓 𝒛 𝒙 = 𝑵(𝝁𝝓 𝒙 , 𝝈𝝓𝟐 (𝒙)), then sample the correspond latent variable 𝒛,	
	 z = 𝜇p 𝑥 + 𝜎p 𝑥 𝜖, 𝜖~N(0,1)

Eq"(1|*) 𝑙𝑜𝑔𝑝$ 𝑥 𝑧 =R
-

𝑙𝑜𝑔𝑝$ 𝑥 𝑧- =
1
2R

-

(
𝑥- − 𝜇- 𝑧

i

𝜎-i 𝑧
+ 𝑙𝑜𝑔𝜎-i(𝑧))2. Evaluate Reconstruction Loss:

• Training: 

𝒙 𝒛 �𝒙 𝒑𝜽 𝒙 𝒛 = 𝑵(𝝁𝜽 𝒛 , 𝝈𝜽𝟐(𝒛))

𝒒𝝓 𝒛 𝒙 = 𝑵(𝝁𝝓 𝒙 , 𝝈𝝓𝟐 (𝒙))

Loss Function ∶ −ER1($|3) 𝑙𝑜𝑔𝑝! 𝑥 𝑧 + 𝐾𝐿	(𝑞! 𝑧 𝑥 ||𝑝(𝑧))
Reconstruction loss Regularization

Samples of z

N(0,1)

If we assume a fixed variance 𝝈𝜽𝟐(𝒛), the log term is constant and can be ignored, simplifying the loss to: Mean Squared Error (MSE) loss 
𝒙 − u𝒙 𝟐

𝐾𝐿 𝑁 𝜇p 𝑥 , 𝜎p 𝑥 ||𝑁 0, 𝐼 = −
1
2
R
-

s

(1 + log(𝜎-i(𝑥)) 	− 𝜇-i(𝑥) 	− 𝜎-i(𝑥))

where the sum is taken over all dimensions in the latent space

3. Evaluate Regularization:

Training: For each data point 𝒙, the VAE architechture will generate	𝝁𝝓 𝒙 , 𝝈𝝓𝟐 𝒙  (for latent space) and 𝝁𝜽 𝒛 , 𝝈𝜽𝟐 𝒛  (for output space).
For latent space, we want to push 𝝁𝝓 𝒙 → 𝟎, 𝝈𝝓𝟐 𝒙 → I (by minimizg the KL). For the output space, we want to push u𝒙 → 𝒙

Decoder: Decoder generates the mean and 
variance of each dimension of data space

Encoder: generates the mean and variance 
of each dimension of latent space

𝒒𝝓 𝒛 𝒙 𝒑𝜽 𝒙 𝒛
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Ø Variational Autoencoder (VAE): 

𝒙 𝒛 �𝒙
𝒑𝜽 𝒙 𝒛 = 𝑵(𝝁𝜽 𝒛 , 𝝈𝜽𝟐(𝒛))

𝒒𝝓 𝒛 𝒙 = 𝑵(𝝁𝝓 𝒙 , 𝝈𝝓𝟐 (𝒙))

Loss Function ∶ −ER1($|3) 𝑙𝑜𝑔𝑝! 𝑥 𝑧 + 𝐾𝐿	(𝑞! 𝑧 𝑥 ||𝑝(𝑧))
Reconstruction loss Regularization N(0,1)

Decoder: Decoder generates the mean and 
variance of each dimension of data space

Encoder: generates the mean and variance 
of each dimension of latent space

𝒒𝝓 𝒛 𝒙 𝒑𝜽 𝒙 𝒛

• Sampling: 𝒛 �𝒙 𝒛~𝑵(𝟎, 𝑰) 𝒑𝜽 𝒙 𝒛
𝒑𝜽 𝒙 𝒛 Path through Sample 𝒑𝜽 𝒙 𝒛 = 𝑵(𝝁𝜽 𝒛 , 𝝈𝜽𝟐(𝒛))
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Connection to Flow Models:

In Variational Autoencoder, we learn an encoder mapping function between a complex distribution of data and a much 
simpler distribution (e.g., Gaussian) that we can sample from(mapping from data to embedding space). We then learn a 
decoder mapping function from the simpler distribution to the complex distribution of data, so that we can generate a new 
data by sampling a point from the simpler distribution and applying the learned transformation. In flow models, the decoding 
function is designed to be the exact inverse of the encoding function.  
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Layer (type)                  Output shape       Param #
-------------------------------------------------------------------
InputLayer (input)             (32, 32, 3)            0
Conv Layer                          (16, 16, 128)       3,584
BatchNormalization          (16, 16, 128)       512
LeakyReLU                          (16, 16, 128)        0
Conv Layer                          (8, 8, 128)         147,584     
BatchNormalization           (8, 8, 128)         512
LeakyReLU                           (8, 8, 128)           0
Conv Layer                           (4, 4, 128)         147,584      
BatchNormalization           (4, 4, 128)         512
LeakyReLU                           (4, 4, 128)           0
Conv Layer                           (2, 2, 128)         147,584
BatchNormalization           (2, 2, 128)          512
LeakyReLU                           (2, 2, 128)           0
Flatten (flatten)                      512                   0
Dense (z_mean)                     200               102,600
Dense (z_log_var)                  200               102,600
Sampling (z)                            200                   0

Layer (type)                 Output shape      Param #
-----------------------------------------------------
InputLayer                      200                    0
Dense                              512               102,912
BatchNormalization      512               2,048
LeakyReLU                      512                     0
Reshape                         (2, 2, 128)           0
TransposeConv Layer   (4, 4, 128)      147,584
BatchNormalization     (4, 4, 128)        512
LeakyReLU                     (4, 4, 128)            0
TransposeConv Layer    (8, 8, 128)         147,584
BatchNormalization      (8, 8, 128)         512
LeakyReLU                      (8, 8, 128)            0
TransposeConv Layer    (16, 16, 128)       147,584
BatchNormalization      (16, 16, 128)       512
LeakyReLU                      (16, 16, 128)       0
TransposeConv Layer    (32, 32, 128)       147,584
BatchNormalization      (32, 32, 128)       512
LeakyReLU                      (32, 32, 128)       0
TransposeConv Layer    (32, 32, 3)         3,459

Example: VAE Encoder and Decoder Architecture for Face Image Generation

Encoder
Decoder

Generates a sample of z using latent space distribution

Latent space 
vector

Unflatten
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• To reduce memory usage during training, a common strategy is to operate in a latent space—a compressed, lower-
resolution representation of the original data.

• The standard procedure begins by encoding the training data into the latent space using a pretrained autoencoder. Then, 
a generative model (e.g., a diffusion model) is trained directly within that latent space.

• For sampling, one first draws samples from the latent space using the trained generative model, and then reconstructs 
the final output using the decoder.

• A well-trained autoencoder filters out semantically irrelevant details, allowing the generative model to focus on the most 
perceptually meaningful features.

Ø Latent-Space based Methods
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Latent Space Diffusion Models (LDMs)
Efficient Generation in Compressed Spaces

48
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Ø Latent-Space Diffusion Model:

Data Representation:
• Standard Diffusion Models apply diffusion directly in the pixel space of images, meaning the model operates directly on raw, high-
dimensional image data.

• Latent Diffusion Models (LDMs) operate in a compressed, lower-dimensional latent space, typically created by encoding raw data 
through an autoencoder. The latent representation preserves essential semantic content while significantly reducing dimensionality.

• Stable Diffusion is a well-known example of a latent diffusion model. It leverages a Variational Autoencoder (VAE) to encode 
high-dimensional images into a compact latent space, where the diffusion process is applied—enabling more efficient generation, 
manipulation, and reconstruction of high-quality outputs.

• The latent representation is lower-dimensional, semantically richer, and more efficient. 
• Noise prediction in the latent space is typically simpler and more computationally efficient, allowing LDMs to generate high-quality outputs 

faster and more efficiently.

Aspect Standard Diffusion Model Latent Diffusion Model (LDM)

Diffusion applied to Pixel space Latent (compressed) space

NN learns Noise prediction in pixels Noise prediction in latent space

Autoencoder usage No Yes, to move between latent and 
pixel space
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1) Encoding Input Data to Latent Space
• First, the high-dimensional data (e.g., images) is encoded into a lower-dimensional latent representation using an autoencoder:

• Encoder: 𝑥 → 𝑧
• x: Input image data (pixel space), z: Latent representation (compressed, low-dimensional latent space). Typically, a Variational Autoencoder (VAE) 

is used here to encode and decode between x and z.

2) Diffusion in Latent Space
• Once encoded, the diffusion process (adding controlled noise step-by-step) is applied to the latent representation z instead of directly to pixel space x:

• Forward Diffusion Process (adding noise incrementally):  𝑧1 → 𝑧$ → 𝑧3 → ⋯ → 𝑧8
• Each latent 𝑧) 	 is a progressively noisier version of the original latent representation 𝑧1.

3) Training Neural Network (Noise Prediction)
• Just like a standard diffusion model, a neural network (usually a U-Net architecture) is trained to reverse the diffusion process by predicting the noise added at 
each step:

• The network learns the conditional distribution: 𝑝* 𝑧)%$ 𝑧) , 𝑡 . Practically, it learns to predict the added Gaussian noise at time step t: 𝜖*(𝑧) , 𝑡) 
• The loss function is structurally identical to that of standard diffusion models:  𝐿 𝜃 = E9! ,;∼= 1,> ,)[	 𝜖	 − 𝜖* 𝑧) , 𝑡

3	]	
• Here: 𝜖	represents the added noise at time step t, 𝜖* 	 is the neural network that predicts this noise. Minimizing this loss helps the model accurately 

predict and remove noise.
• In the training phase, the latent representation 𝑧1	 is obtained by encoding the input image directly through the encoder. 

4) Sampling from the Latent Diffusion Model
• Once trained, sampling involves starting from pure Gaussian noise in the latent space and progressively denoising it step-by-step using the learned model:

• Reverse diffusion (denoising): 𝑧8 → 𝑧8%$ → 𝑧8%3 → ⋯ → 𝑧1	
• The learned neural network iteratively denoises the latent variable representation until a meaningful latent representation 𝑧1 is obtained.

5) Decoding to Pixel Space
• The final latent representation 𝑧1 is decoded back into the original high-resolution image space using the decoder part of the autoencoder:

• Decoder: 𝑧1 → 𝑥′

Ø Latent-Space Diffusion Model:
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Ø Latent-Space Diffusion Model:

Feature Traditional VAE Latent Diffusion (e.g., DALL·E 3)

Latent space shape Vector (e.g., [B, 128]) Tensor (e.g., [B, 4, 64, 64])

Structure No spatial structure Compressed 2D spatial grid

Encoder Fully connected or simple CNN Deep CNN

Decoder Fully connected or simple CNN Deep CNN

Used for Basic generation or feature 
compression tasks

High-resolution, semantically rich 
image generation tasks
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Autoregressive Models
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• Autoregressive (AR) models in Generative AI are a class of models that generate data sequentially, predicting each new data point based on 
previously generated ones.

• Autoregressive models generate outputs step by step, where each step conditions on prior steps. The neural network in an autoregressive 
model follows a causal dependency structure, meaning it predicts the next output only based on past inputs, never future ones.

• Given a sequence of data points 𝑥#, 𝑥*, … , 𝑥) the probability of generating the sequence is factorized as:

𝑃 𝑥#, 𝑥*, … , 𝑥) = 𝑃 𝑥# 𝑃 𝑥* 𝑥# 𝑃 𝑥S 𝑥#, 𝑥*, 𝑥S …𝑃(𝑥)|𝑥#, 𝑥*, … , 𝑥)"#)

Instead of modeling the entire sequence at once, e.g., 𝑃 𝑥#, 𝑥*, … , 𝑥) , an AR model predicts each element based 
on previous elements e.g., 𝑃 𝑥&|𝑥#, 𝑥*, … , 𝑥&"# .
• High-dimensional distributions are modeled as the product of one-dimensional conditional distributions

• An autoregressive neural network learns to predict the next token (word, pixel, audio sample) in a sequence based on previously 
generated tokens. The process involves probabilistic modeling, where the neural model learns a probability distribution over the next 
token at each step.

NNSequence of token
(e.g., word, pixels)

A probability distribution over all possible 
tokens to decide the next token.

Ø Autoregressive (AR) models 
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Ø Inference Process: To generate output using the trained model
1. Convert input tokens into embeddings (numerical representations). 
2. Feed embeddings into a neural network
3. The network produces a probability distribution over the tokens. 
4. A token is sampled from this distribution. 
5. The chosen token is appended to the sequence and fed back as input. 
6. Steps 1-5 are repeated until a stopping criterion is met (e.g., maximum length or end-of-sequence token)

• Example: 
• Input: “The cat sat on the“
• Model predicts next word: {"mat": 0.8, "floor": 0.1, "table": 0.05, "cloud": 0.05}
• Sampled: "mat“
• New input: "The cat sat on the mat“
• Model predicts next word: ...

• Each token is mapped to a high-dimensional vector using an embedding layer.

Ø Tokenization and Embedding in Autoregressive Models
Before feeding data into an autoregressive neural network, raw data must be converted into numerical 
representations that the model can process. This happens in two main steps: tokenization and embedding.
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Ø Tokenization: Tokenization is the process of splitting data (e.g., text) into smaller units called tokens (words, 
subwords, or characters). These tokens are then mapped to numerical indices.

• Example:
• Input: "The cat sat on the mat.“
• Tokens: ["The", "cat", "sat", "on", "the", "mat", "."]
• Each token is mapped to an integer ID using a pre-defined vocabulary.
• ["The" → 320, "cat" → 124, "sat" → 567, "on" → 87, "the" → 231, "mat" → 943, "." → 2]
• Output: [320, 124, 567, 87, 231, 943, 2]

Ø Embedding: Converting Tokens into Continuous Vectors
Once the tokens are converted into numerical IDs, they are mapped into dense vectors through an embedding layer. 
This step ensures that the model captures semantic meaning instead of treating words as arbitrary numbers.

An embedding matrix 𝐸 ∈ RT×-  is a learnable lookup table that maps each token ID to a high-dimensional vector, 
where d is the embedding size and V is the Vocabulary size (number of tokens in the model).

Example: If "cat" has token ID 124, we look up the 124th row in the embedding matrix to get a vector.

Example: For a vocabulary of size V = 50,000 and embedding size d = 768, we get: 

"The"  → [ 0.2, -0.1,  0.5, ...,  0.3]
"cat"  → [ 0.8, -0.3,  0.1, ..., -0.2]
"sat"  → [-0.1,  0.7, -0.5, ...,  0.6]

Each word gets a 768-dimensional vector.

55

Ashkan Jasour

Autoregressive Models



56

Sequence A: [123, 456, 789] 
Sequence B: [123, 456, 789, 101, 202, 303]

• Example: The embedding layer maps each token index to a vector:
Output = EmbeddingMatrix[token indices]

•Sequence A (3 tokens) → Output shape: (3, d)
•Sequence B (6 tokens) → Output shape: (6, d)
Embedding Output ∈ Rsequence length×d

• The embedding matrix E is a set of trainable parameters in the model. It is updated using gradient descent just like any 
other model parameters ( e.g., layer weights).

• Words with similar meanings have embeddings close in space. This reflects learned semantic similarity in vector space

NN
Sequence of token
(e.g., word, pixels)

Embedding 
Layer

Embeddings ∈ Rsequence length×d
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Ø Training:
Loss Function: Cross-entropy loss between the predicted probability and actual token.

• The target distribution (ground truth) is a one-hot vector, where all values are 0 except for a 1 at the position 
corresponding to the correct next token. 

• The neural network's output is a predicted probability distribution over the vocabulary, and during training, it 
learns to make this predicted distribution as close as possible to the one-hot ground truth distribution.

Example:
Vocabulary: ["cat", "dog", "fish", "elephant"]
Ground Truth (One-hot Vector) : [0, 1, 0, 0] (next token: dog)
Model's Predicted Probabilities: [0.1, 0.7, 0.15, 0.05]

Loss Calculation: L=−log(0.7)=0.356

𝐿 = −/
&

T

𝑦&𝑙𝑜𝑔𝑝&

where, 𝑦&  is 1 for the true next token, 0 for all others (one-hot encoding) and 𝑝& 	is the predicted probability for token 𝑖.

57

Ashkan Jasour

Autoregressive Models



58

Ø Autoregressive (AR) Models: 

Model Type Relation to Autoregression Use Cases

Bayes' Net Probabilistic Graphical Model Can be autoregressive if 
structured sequentially

Probabilistic inference, 
generative modeling

MADE Neural Network (Masked 
Autoencoder)

Enforces autoregression via 
masks

Density estimation, 
generative modeling

Causal Masked NN Transformer-based Neural 
Network

Uses masks to prevent future 
information from leaking

Language models (GPT), 
Image generation (PixelCNN)

RRN Recurrent Neural Network
Processes sequences 
autoregressively with residual 
connections

Speech synthesis, sequential 
data modeling
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Generative Adversarial Networks (GANs)
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• GANs consist of two neural networks—a generator and a discriminator—that compete in a min-max game framework.

• The generator receives a random noise vector (latent space representation), often sampled from a Gaussian or uniform 
distribution. The generator outputs synthetic data (e.g., images, text, audio) that mimic real data (similar to decoder of a 
VAE).

• The discriminator receives two types of inputs: Real data samples from the actual dataset and Fake data samples 
generated by the generator. The discriminator outputs a probability score (0 to 1) indicating whether the input is real or 
fake.

Ø Generative Adversarial Networks (GANs)

Generator Discriminatorrandom noise
(latent space)

Generated
 Image

Image 
(either real or fake)

The probability that 
an image is real

Discriminator: It is trained to distinguish the real and fake images.
Generator: The generator is trained to produce images that the discriminator classifies as real.

• Like flow models and VAEs, GANs aim to generate samples by transforming noise into data. 
• Implicit Generative Model: Does not require explicit likelihood modeling or density estimation.
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Training Process:
1) Discriminator: 

• Discriminator should output the probability of the input image being real; Hence, for the real images it should output 
probability of 1 and for the fake images it should output probability of 0.

• We can treat this as a supervised learning problem, where the labels are 1 for the real images and 0 for the fake 
images, with binary cross-entropy as the loss function. 

2) Generator: 
• We want to train the generator to produce images that the discriminator thinks are real. Hence, to train the generator, 

its output images are passed to the discriminator to compute scores
• The loss function for the generator is the binary cross-entropy between the discriminator’s predicted probabilities and 

the vector of ones.

3) Repeat: The process iterates, improving both networks over time. We must alternate the training of these two networks 
and only update the weights of the one network at a time. The goal is to generate images to be predicted close to one 
because the generator is strong not because the discriminator is weak.

Discriminator

Batch of Fake Images

Discriminator

Batch of Real Images

Generator

Random Noise
(latent space)

𝑝t#
𝑝ti
…
𝑝t,

0
0
0
0

𝑝G#
𝑝Gi
…
𝑝G,

1
1
1
1

Labels Probabilities
Discriminator

𝑝u#
𝑝ui
…
𝑝u,

1
1
1
1

Labels Probabilities

Generator Training

Discriminator Training
Batch of Fake Images 
(output of Generator)

61

Ashkan Jasour

Generative Adversarial Networks



62

• 𝐷(𝑥) is the discriminator’s probability estimate that 𝑥 is real.
• 𝐺 𝑧  is the generator’s output given a random noise 𝑧.
• 𝐷(𝐺 𝑧 ) is the discriminator’s probability estimate that 𝐺 𝑧  is real.
• 𝑃svEv(𝑥) represents the real data distribution.
• 𝑃1(𝑧) represents the latent space distribution (random noise input to generator)

• Discriminator should be trained to output 𝐷 𝑥 = 1 and 𝐷 𝐺 𝑧 = 0

• Generator should be trained to output 𝐷 𝐺 𝑧 = 0

max
V

E3~W&'$'(3) log𝐷 𝑥 ≈max
V

1
𝑁  /

&

6

log𝐷 𝑥& max
X

E$~W2($) log 1 − 𝐷 𝐺 𝑧 ≈max
V

1
𝑁  /

&

6

log 1 − 𝐷 𝐺 𝑧&

Encourages the discriminator to assign higher 
probability (closer to 1) to real samples.

Encourages the discriminator to assign lower 
probability (closer to 0) to fake samples.

min
Y
−E$~W2($)[log𝐷(𝐺 𝑧 )] = min

Y
E$~W2($) log 1 − 𝐷 𝐺 𝑧

Ø Min-Max Game: min
Z
	max
V

E3~W&'$'(3) log𝐷 𝑥 + E$~W2($)[log 1 − 𝐷 𝐺 𝑧 ]

This encourages the generator to maximize D(G(z)), making fake samples appear real to the 
discriminator (Hence, discriminator outputs a probability close to 1 for fake samples).

At equilibrium, the generator produces samples that are indistinguishable from real data, and the discriminator assigns a 
probability of 0.5 to both real and fake data.

Ø Loss Functions:

&
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Example:

• Batch size = 5 
• Discriminator outputs: 

Real images: 𝐷 ( 𝑥 ) = [ 0.9 , 0.8 , 0.95 , 0.7 , 0.85 ] 
Fake images: 𝐷 ( 𝐺 ( 𝑧 ) ) = [ 0.1 , 0.2 , 0.05 , 0.3 , 0.15 ] 
The discriminator loss is composed of two parts:

−
1
𝑁
R
-.#

,

log𝐷 𝑥- = −1/5(log0.9+log0.8+log0.95+log0.7+log0.85)

Loss for Fake Images: −
1
𝑁
R
-.#

,

log(1 − 𝐷 𝐺(𝑧-) ) = −1/5(log(1−0.1)+log(1−0.2)+log(1−0.05)+log(1−0.3)+log(1−0.15)) 

• Compute Generator Loss: −
1
𝑁
R
-.#

,

log(𝐷 𝐺(𝑧-) ) = −1/5(log0.4+log0.5+log0.45+log0.55+log0.6) 

• Generator outputs (trying to fool the discriminator): 𝐷 ( 𝐺 ( 𝑧 ) ) = [ 0.4 , 0.5 , 0.45 , 0.55 , 0.6 ]

Loss for Real Images:
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Ø Training Challenges:

• Discriminator Overpowers the Generator
When the discriminator becomes too strong, loss function of generator becomes too weak to improve the generator (the 
generator receives vanishing gradients and cannot improve effectively).

• Generator Overpowers the Discriminator
Mode collapse: The generator starts mapping many latent inputs to a limited set of outputs, that fools the 
discriminator, reducing diversity.

Ø Sampling Process: The generator takes a random latent vector (noise) as input. It outputs high-fidelity synthetic data. 
The trained discriminator is usually discarded during inference.
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Layer (type)                 Output shape      Param #
-----------------------------------------------------
InputLayer                  (64, 64, 1)           0
Conv Layer                   (32, 32, 64)       1,024
LeakyReLU                  (32, 32, 64)         0
Dropout                      (32, 32, 64 )        0
Conv Layer                  (16, 16, 128)      131,072
BatchNormalization   (16, 16, 128)      512
LeakyReLU                   (16, 16, 128)      0
Dropout                       (16, 16, 128)      0
Conv Layer                   (8, 8, 256)        524,288
BatchNormalization   (8, 8, 256)        1,024
LeakyReLU                   (8, 8, 256)          0
Dropout                       (8, 8, 256)          0
Conv Layer                   (4, 4, 512)        2,097,152
BatchNormalization   (4, 4, 512)        2,048
LeakyReLU                    (4, 4, 512)         0
Dropout                        (4, 4, 512)         0
Conv Layer                   (1, 1, 1)          8,192
Flatten                               1                   0

Layer (type)                 Output shape      Param #
-----------------------------------------------------
InputLayer                            100                0
Reshape                           (1, 1, 100)          0
Transpose Conv Layer   (4, 4, 512)          819,200
BatchNormalization       (4, 4, 512)        2,048
ReLU                                 (4, 4, 512)           0
Transpose Conv Layer    (8, 8, 256)         2,097,152
BatchNormalization        (8, 8, 256)         1,024
ReLU                                  (8, 8, 256)             0
Transpose Conv Layer     (16, 16, 128)      524,288
BatchNormalization          (16, 16, 128)      512
ReLU                                   (16, 16, 128)       0
Transpose Conv Layer       (32, 32, 64)       131,072
BatchNormalization          (32, 32, 64)       256
ReLU                                    (32, 32, 64)        0
Transpose Conv Layer       (64, 64, 1)        1,024

Example: GAN Discriminator and Generator Architectures for Image Generation.
Discriminator Generator
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• GAN Variants

Model Improvement Architecture Use Case
Vanilla GAN Basic GAN architecture Simple MLP-based Generator & Discriminator General image generation
DCGAN Uses CNNs for better stability Convolutional layers, BatchNorm, LeakyReLU Image synthesis
cGAN Conditional inputs Adds class labels to both Generator & Discriminator Controlled generation (e.g., digit-to-image)
InfoGAN Learns disentangled features Introduces mutual information loss for latent variables Structured data generation
WGAN Better loss function for stability Uses Wasserstein distance with weight clipping Stable training and high-quality generation
WGAN-GP Improves WGAN training Uses gradient penalty instead of weight clipping Large-scale training, better convergence
LSGAN Uses least squares loss Replaces cross-entropy loss with L2 loss Super-resolution, stable training
EBGAN Energy-based discriminator Uses an autoencoder-based Discriminator Image denoising, generative tasks
BEGAN Balances training of G & D Uses equilibrium constraint for autoencoder-based Discriminator Artistic image generation

BigGAN High-resolution images Scaled-up GAN with larger batch sizes and self-attention Photorealistic image generation
StyleGAN Fine-grained style control Introduces Adaptive Instance Normalization (AdaIN) DeepFake, high-quality face synthesis
SAGAN Uses self-attention Self-attention mechanism for long-range dependencies High-quality image synthesis
CycleGAN Unpaired image-to-image translation Two GANs with cycle-consistency loss Image transformation (e.g., horse ↔ zebra)
Pix2Pix Paired image-to-image translation U-Net Generator with PatchGAN Discriminator Sketch-to-image, image enhancement
StarGAN Multi-domain translation Single model trained with domain labels Face attribute editing (e.g., age, hair color)
SRGAN High-resolution image synthesis Uses perceptual loss and deep CNNs Super-resolution image enhancement
PGGAN Progressive growing for high-resolution images Starts with low-res images and increases resolution gradually High-resolution face synthesis
DualGAN Unpaired image translation Two generators and two discriminators like CycleGAN Domain adaptation, cross-domain mapping
Few-Shot GAN Learns from few samples Pretrained GANs adapted for few-shot learning Personalized image generation

MoCoGAN Video synthesis with motion-content 
separation Uses separate latent variables for motion and content Video generation (e.g., animations)

DVD-GAN Autoregressive video synthesis Uses autoregressive latent space modeling with deep CNNs High-quality video generation
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Ø Generative AI - Algorithms
• Flow Models
• Ordinary Differential Equation (ODE)-based Flow Models
• Denoising Diffusion Models (DDMs)
• Stochastic Differential Equation(SDE)-based Denoising Diffusion Models
• Autoencoders and Variational Autoencoders (VAEs) 
• Latent Space Diffusion Models
• Autoregressive Models
• Generative Adversarial Networks (GANs)

Topics:

Ø Generative AI - Architectures
• Multilayer Perceptrons (MLPs)
• Training and Loss Functions Types
• Backpropagation Algorithm, Stochastic Gradient Descent (SGD), and Adam Optimizer
• Common Training Issues, Regularization in Deep Learning, and Scaling Laws for Deep Learning
• Convolutional Neural Networks (CNNs) and PixelCNN
• U-Net Denoising Model
• Recurrent Neural Networks (RNNs), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit)
• Transformers: Self-Attention, Multi-Head Attention, and Cross-Attention
• Diffusion Transformers (DiTs), Vision Transformers (ViTs), and Attention-Based U-Nets
• Multimodal Models
• Foundation Models
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Generative AI - Architectures
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Topics:

Ø Generative AI - Architectures
• Multilayer Perceptrons (MLPs)
• Training and Loss Functions Types
• Backpropagation Algorithm
• Stochastic Gradient Descent (SGD) and Adam Optimizer
• Common Training Issues, Regularization in Deep Learning, and Scaling Laws for Deep Learning
• Convolutional Neural Networks (CNNs)
• PixelCNN
• U-Net Denoising Model
• Recurrent Neural Networks (RNNs) 
• LSTM (Long Short-Term Memory) 
• GRU (Gated Recurrent Unit)
• Transformers: Self-Attention, Multi-Head Attention, and Cross-Attention
• Diffusion Transformers (DiTs)
• Vision Transformers (ViTs)
• Attention-Based U-Nets
• Multimodal Models
• Foundation Models
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Multilayer Perceptrons (MLPs)
Basic Building Block for Fully Connected Neural Networks 
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Ø Multilayer Perceptron (MLP)
• Structure: MLP consists of three types of layers: 

• Input Layer: The first layer, which receives the input features. 
• Hidden Layers: One or more intermediate layers that apply 

transformations using weighted sums followed by activation 
functions. 

• Output Layer: The final layer that produces the network’s prediction, 
often as logits or probabilities.

• Key Characteristics
• Fully Connected: Each neuron in one layer is connected to every 

neuron in the next layer.
• Nonlinear Activation Functions: Typically uses activation 

functions such as ReLU, sigmoid, Softmax, or tanh to introduce 
non-linearity.

𝑥 ∈ 𝑅#: Input vector, 𝑦 ∈ 𝑅?: output vector , 𝑊 ∈ 𝑅?×#	= Weight matrix, 
𝑏 ∈ 𝑅?	= Bias term, 𝑓 Activation function

• Backpropagation: Trains the network using the backpropagation algorithm with an optimization technique like Stochastic Gradient 
Descent (SGD)

72

Each neuron computes a weighted sum of its inputs and 
applies an activation function, i.e., 𝑦 = 𝑓(𝑊𝑥 + 𝑏)
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Ø Softmax  Activation Function
• When a neural network uses softmax in the output layer, it transforms the final layer's raw scores (logits) into normalized 

probability distributions.

A neural network with n output neurons.
The pre-activation outputs (logits) of the final layer as	𝑧	 = 	 [	𝑧#	, 𝑧*	, . . . , 𝑧)	]	

𝑧& = 𝑊&
O𝑥 + 𝑏&

The weight matrix 𝑊 and bias 𝑏.

• This ensures: 0 ≤ 𝑦& ≤ 1 for all 𝑖  and∑&'#) 𝑦& = 1

• In Autoregressive Models softmax is used to compute probabilities for the next tokens.

• Softmax is widely used in generative models that involve discrete data generation, especially in scenarios where the 
model needs to output categorical distributions.

Example: 
𝑧 = 𝑧$, 𝑧3, … , 𝑧# 	 𝑒9 = 𝑒9" , 𝑒9# , … , 𝑒9$ 	

𝑒9

𝑒9" + 𝑒9# +⋯+ 𝑒9$
= [

𝑒9"
𝑒9" + 𝑒9# +⋯+ 𝑒9$

,
𝑒9#

𝑒9" + 𝑒9# +⋯+ 𝑒9$
, … ,

𝑒9$
𝑒9" + 𝑒9# +⋯+ 𝑒9$

]

73

𝑦& =
𝑒$%	

∑['#) 𝑒$3	
𝑖 = 1, … , 𝑛

Softmax  Activation Function

Outputs:
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• MLP (Multilayer Perceptron)
A Multilayer Perceptron (MLP) is a type of fully connected feedforward neural network with at least one hidden layer.

• Dense Layer
A Dense layer is a fully connected layer where each neuron receives input from all neurons of the previous layer.

𝑦 = 𝑊𝑥 + 𝑏

• Feedforward Layer
A Feedforward layer is a general term for any layer in a neural network where information flows in one direction (forward only, no cycles).
All Dense layers are feedforward layers. 
An MLP is a type of feedforward network.

Activation Function (usually applied after each dense layer to introduce non-linearity)
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Term Definition Impact on Training

Batch Size Number of samples per weight update Smaller batch → Noisy updates but better generalization

Epoch One full pass through the dataset More epochs → Better learning, but risk of overfitting

Weight Updates How often model parameters are updated More updates → Faster convergence, but risk of instability

Ø Training

Step 1: Initialize Weights
• Randomly initialize weights 𝑊 and biases 𝑏

For each batch in epoch: 
Step 2: Forward Pass

• Compute outputs by applying the forward pass for each input in the batch: 𝑌 = 𝑓(𝑊𝑋 + 𝑏)
 

• Compute loss 𝐿(𝑌, 𝑌)ABC)

Step 3: Backpropagation
• Compute gradients: DE

DF
, DE
DG

• Adjust weights using gradient descent.

Step 4: Update Weights
• Using the learning rate 𝜂, update parameters: 𝑊 = 𝑊 − 𝜂 DE

DF
, 𝑏 = 𝑏 − 𝜂 DE

DG

Step 5: Repeat for all batches in an epoch
• Process all batches in one epoch.
• After one epoch, the model has seen all training samples once.

Step 6: Repeat for Multiple Epochs
• Iterate multiple times until convergence.

Weight updates happen after 
observing all the data in the batch 
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Ø Loss functions

• Regression Loss Functions used when predicting continuous values.

𝑀𝑆𝐸 =
1
𝑛
z
45&

)

𝑦4 − |𝑦4 'Ø Mean Squared Error (MSE): 𝑦 ∈ 𝑅#

• Classification Loss Functions used for multi-class or binary classification (when predicting categorical labels).

𝐿 = −z
45&

'

𝑦4 log |𝑦4 = − 	𝑦4 log |𝑦4 + (1 − 𝑦4 log 1 − |𝑦4 	)Ø Binary Cross-Entropy (Log Loss):

• Binary classification: BCE is a specific type of CCE that has only 2 classes
• The model outputs a probability distribution over 2 classes (using sigmoid activation).
• 𝑦0 ∈ {0,1} true label (class 0 or class 1,e.g., fake or real image)

𝐿 = −z
45&

6

𝑦4 log |𝑦4 = −log( |𝑦7899:7.	7;-<<)Ø Categorical Cross-Entropy: 

Example (3-class classification):
True label: 𝑦	="cat“ → One-hot encoded: y=[1,0,0],    Model prediction (after softmax): |𝑦= [0.8, 0.1, 0.1],     Loss = −(1⋅log0.8+0⋅log0.1+0⋅log0.1)=−log0.8

• The model outputs a probability distribution over C classes (using softmax activation).
• 𝑦4 ∈ {0,1} one-hot encoded labels
• |𝑦4 ∈ (0,1) predicted probability for class 𝑖=1,..,C

𝑦 ∈ 𝑅H

Example (Image Classification)
True label: y=1 (Fake Image),   Model Prediction: |𝑦	=0.9 (90% confidence that image is fake), Loss = −log0.9

• Batch Loss: $
=
∑0I$= 𝐿𝑜𝑠𝑠(𝑖) where 𝑁 is the batch size, and 𝐿𝑜𝑠𝑠(𝑖) is the single sample loss.
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• Kullback-Leibler (KL) divergence measures the distance between the true and predicted distributions:

𝐾𝐿(𝑃||𝑄) =R
-

𝑃 𝑖 𝑙𝑜𝑔
𝑃 𝑖
𝑄(𝑖)

True distribution
Predicted distribution

77

Ø Loss functions for Data distribution

• Cross-entropy measures the distance between the true and predicted distributions:

𝐻 𝑝,𝑄 = −R
-

𝑃 𝑖 𝑙𝑜𝑔𝑄(𝑖)

• Minimizing cross-entropy is equivalent to minimizing KL divergence. 𝐻 𝑝,𝑄 = 𝐾𝐿(𝑃| 𝑄 − ∑- 𝑃 𝑖 𝑙𝑜𝑔𝑃(𝑖)

Fixed (entropy of the true distribution)

• Earth Mover’s Distance (EMD): measures the minimum cost to transform one distribution into another:

• Also called Wasserstein-1 distance. 
• Takes the geometry of the distributions into account 
• Used in Wasserstein GANs (WGAN) for more stable training 
• Always finite and more robust to disjoint supports than KL 

𝐸𝑀𝐷 𝑃,𝑄 = inf
�∈�(�,�)

E *,n ~� 𝑥 − 𝑦
The set of all joint distributions whose marginals are P and Q
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• KL divergence VS Earth Mover’s Distance (EMD): 

78

Ø Loss functions for Data distribution

• KL divergence is sensitive to support mismatch. If the model (Q) assigns zero probability to something the true distribution (P) says is possible, KL 
divergence becomes infinite. That’s what makes it sensitive to support mismatch. 

• Even if P and Q have disjoint supports, EMD is still finite.
• That’s one reason Wasserstein distance is more robust than KL divergence in practice (e.g., in WGANs).

• Alex Williams, “A Short Introduction to Optimal Transport and Wasserstein Distance”, 2020
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Backpropagation is the algorithm used to compute the gradients of the loss function with respect to each weight in the network, so 
we can update them using gradient descent. 

79

• Backpropagation Algorithm

Step Value/Explanation
Input 𝑥	 = 	2
Target Output 𝑦	 = 	0.8
Initial Weights 𝑤& 	= 	0.5, 𝑤' 	= 	−1.0
Initial Biases 𝑏& 	= 	0, 𝑏' 	= 	0
Hidden Layer Linear 𝑧& 	= 	𝑤& ∗ 𝑥 + 𝑏& 	= 	0.5	 ∗ 	2	 = 	1.0
Hidden Layer Activation 𝑎& 	= 	𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧&) ≈ 	0.731
Output Layer |𝑦 	= 	𝑤' ∗ 𝑎& +	𝑏' 	= 	−1.0	 ∗ 	0.731	 = 	−0.731
Squared Error Loss 𝐿𝑜𝑠𝑠	 = 	0.5	 ∗ |𝑦 	− 	𝑦 ' 	 ≈ 1.311

Gradient 
=>
= ?@ |𝑦 	 − 	𝑦	 = 	−0.731	 − 	0.8	 = 	−1.531

Gradient 
= ?@
=A# 𝑎& 	= 	0.731

Gradient 
=>
=A# −1.531	 ∗ 	0.731	 ≈ 	−1.120

Gradient 
= ?@
=-$ 𝑤' 	= 	−1.0

Gradient 
=-$
=%$ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧&)(1	 − 	𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧&)) 	≈ 	0.197

Gradient 
=%$
=A$ 𝑥	 = 	2

Gradient 
=>
=A$ −1.531	 ∗ 	−1.0	 ∗ 	0.197	 ∗ 	2	 ≈ 0.603

Learning Rate 𝜂	 = 	0.1
Weight Update w2 𝑤' ∶= 	−1.0	 − 	0.1 ∗ (−1.120) 	= 	−0.888
Weight Update w1 𝑤& ∶= 	0.5	 − 	0.1 ∗ 0.603	 = 	0.4397

𝑥
𝑤& 𝑧& = 𝑤& ∗ 𝑥 + 𝑏&

𝑎& = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧&)
𝑎& 𝑤'

|𝑦= 𝑤' ∗ 𝑎& + 𝑏'
|𝑦

True 𝑦 = 0.8

𝜕𝐿
𝜕𝑊

=
𝜕𝐿
𝜕 �𝑦

𝜕 �𝑦
𝜕𝑊

Forward pass

Backward pass: =>=B$
, =>=B#

𝜕𝐿
𝜕𝑊'

=
𝜕𝐿
𝜕 |𝑦

𝜕 |𝑦
𝜕𝑊'

=>
=B$

= =>
= ?@

= ?@
=-$

=-$
=%$

=%$
=B$

where �𝑦: NN output

• Example of forward and backward passes in a 2-layer MLP:
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• Stochastic Gradient Descent (SGD)

80

Stochastic Gradient Descent (SGD) is an optimization algorithm used to find the minimum of the loss function. 
It's a variation of the traditional Gradient Descent, but instead of using the entire dataset to calculate the gradient, SGD uses a randomly 
selected data point or a small subset (mini-batch) for each update. This makes it particularly efficient for large datasets.

Ø Traditional Gradient Descent:
1.Loop over all 𝑁	training data (e.g., 10,000 examples)
2.Compute the gradient of the loss for each data sample with respect to each weight
3.Average the gradients across all samples
4.Update the weights using the mean gradient

Ø Stochastic Gradient Descent (SGD):
• Update after every single sample
• Faster updates, but more noise in training

1.Randomly shuffle the dataset
2.For each individual training sample (𝑥 - , 𝑦(-)):
 a. Compute the gradient of the loss
 b. Immediately update the weights using that single gradient

Ø Mini-Batch Stochastic Gradient Descent: 
1. Divide the training data into mini-batches (e.g., batch size = 100)
2. For each mini-batch B = 𝑥 - , 𝑦 -

�.#
�

: 
 a. Compute the gradient for each sample in the batch
 b. Average gradients in the mini-batch
 c. Update the weights using the average
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• Adam Optimizer

• The Adam optimizer is an adaptive variant of stochastic gradient descent (SGD).
• It operates identically to SGD except that it introduces two additional variables, 𝑠 and 𝑟, representing exponential moving averages 

of the gradients. These are known as the first and second moments of inertia.
• The first moment of inertia of a distribution refers to its mean, while the second is the uncentered variance. More specifically, 𝑠- is 

the moving average of the mean of the gradient and 𝑟- is the moving average of the variance. 

element-wise square

• Diederik Kingma and Jimmy Ba, "Adam: A Method for Stochastic 
Optimization, December 22, 2014, https://arxiv.org/abs/1412.6980v8.

• Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. 
Retrieved from http://www.deeplearningbook.org 
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Ø Common Training Issues
1. Covariance Shift: Happens when the distribution of input data changes between the training and test data distributions, making the model struggle with 
generalization. Batch Normaliza\on𝟏 helps reduce this by stabilizing feature distributions across batches.
 
2. Exploding Gradient:Occurs when gradients become excessively large during backpropagation, causing unstable training or divergence. This happens in deep 
networks with large weight updates, and is mitigated using gradient clipping, proper weight initialization, or batch normalization.

3. Vanishing Gradient: Occurs when gradients become extremely small in early layers, often due to deep network depth or saturated activation functions (e.g., 
sigmoid or tanh), causing the weights to update minimally and slowing or halting learning. This can be mitigated by techniques like ReLU activation, proper 
initialization, and batch normalization.
 
4. Overfitting: Model memorizes training data instead of generalizing. Fix: Regularization (Dropout, L2: Penalizes large weights by adding an L2 penalty to the loss 
function to encourage smaller weight values), Data Augmentation, More Data.

5. Underfitting: Occurs when the model is too simple to capture underlying patterns in the data. Fix: Increase model capacity (more layers, neurons), Reduce 
regularization.

6. Dead Neurons: Neurons output zero values permanently often due to ReLU units getting stuck in the non-active region (outputting 0). Fix: Use Leaky ReLU or 
Parametric ReLU, better weight initialization.

7. Saturated Activations : Activations (e.g., sigmoid, tanh) get stuck near extremes, causing small gradients. Fix: Use ReLU, Batch Normalization, Proper Weight 
Initialization.

8. Slow Convergence: Model takes too long to learn. Fix: Learning rate scheduling, Adam optimizer, Proper initialization.

Ø Degradation Problem in Deep Networks: The degradation problem refers to the phenomenon where increasing the depth of a deep neural network does not 
necessarily lead to better performance. Instead, deeper networks often experience: Vanishing Gradient, Overfitting, Performance Saturation, Optimization 
Difficulties.
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Ø Regularization in Deep Learning

83

• Regularization in Deep Learning refers to a set of techniques used to prevent overfitting—which occurs when a neural network learns 
to perform well on training data but fails to generalize to unseen data.

• To improve the generalization ability of a deep learning model by discouraging it from fitting noise or overly complex patterns in the 
training data.
Without regularization:

• Neural networks can have large weight magnitudes, allowing them to fit the training data extremely well—even the noise.
• This leads to low training loss but high validation/test loss (poor generalization).

With regularization:
• The model is guided to learn simpler and more generalizable patterns that capture the underlying structure of the data.

Technique Description Effect

L1 Regularization (Lasso) Adds a penalty proportional to the absolute values of weights to the loss function: loss + λ 

L2 Regularization (Ridge) Adds a penalty proportional to the squared values of weights: loss + λ 

Dropout𝟏 Randomly disables a fraction of neurons during training Reduces dependency on specific neurons; prevents co-
adaptation

Early Stopping Stops training when performance on validation set stops improving Avoids overfitting beyond optimal epoch

Data Augmentation Increases training data by transforming inputs (e.g., rotation, cropping) Makes model more robust and less likely to memorize 
training data

Batch Normalization Normalizes inputs to each layer Has regularization effects by adding noise during training

Weight Decay A form of L2 regularization often implemented directly in optimizers (like in Adam or SGD) Penalizes large weights during optimization

• For more info: Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. Retrieved from http://www.deeplearningbook.org 
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• Scaling laws describe how the performance of machine learning models — especially large language models (LLMs) — improves 
as you scale up core factors such as model size, dataset size, and compute power.

Ø Scaling Laws for Deep Learning

• They are empirical relationships showing that model performance improves predictably—often logarithmically or according to a power 
law—as the scale increases. This is typically expressed as:  𝐿𝑜𝑠𝑠 ≈ 𝐴.𝑁"H, 
where, 𝑁 represents model size, data size, or compute budget, 𝛼	is a positive scaling exponent, and 𝐴 is a fitting constant. As 𝑁 
increases, the loss decreases smoothly on a log-log scale.

• Key Ideas from Scaling Laws in LLMs:

• Bigger Models Perform Better: As you increase the number of parameters, test loss and downstream performance improve — 
assuming enough data.

• More Data Helps, But Diminishing Returns: After a certain point, increasing data without increasing model size helps less.

• Compute Budget Must Be Balanced: There’s an optimal trade-off between model size, training steps, and data — for a fixed 
compute budget. 
• Proposed Chinchilla scaling law: for a fixed compute budget, smaller models trained on more data outperform very large 

models trained on less data.
• The Optimal Trade-off Rule (from Chinchilla): For a fixed compute budget C, the optimal model size 𝑁 and training tokens 𝐷 

satisfy approximately: 𝐷 ∝ 𝑁. That is, If we double the model size, we should also double the amount of training data (and 
compute). Otherwise, we’re not using your compute efficiently.

• Kaplan et al. (Open AI 2020) in “Scaling Laws for Neural Language Models”
• Hoffmann et al. (2022), in the Chinchilla paper “Training Compute-Optimal Large Language Models”
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Convolutional Neural Networks (CNNs)

85

• Kaiming He et al., “Deep Residual Learning for Image Recognition," December 10, 2015, https://arxiv.org/abs/1512.03385
• Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,, April 8, 2009, https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.
• Vincent Dumoulin and Francesco Visin, “A Guide to Convolution Arithmetic for Deep Learning”, 2018, https://arxiv.org/abs/1603.07285.
• Van Den Oord, Aäron, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural networks”, International conference on machine learning. PMLR, 2016. 

https://arxiv.org/abs/1601.06759 
• Sergey loffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, 2015, https://arxiv.org/abs/1502.03167 .
• Nitish Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting," Journal of Machine Learning Research 15 (2014), 

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf 
• Foster, David. Generative deep learning. " O'Reilly Media, Inc.", 2022. 
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Ø Convolutional Neural Network (CNN)
• Primarily used for processing structured grid data, such as images.
• CNNs account for the spatial structure of the input data.

Ø Key Component
• Convolution Layers:

• Apply convolution operations using small filters (kernels) that slide over the input. 
• Filters affect the input data dimensions (width, height, and number of channels).
• These filters learn spatial hierarchies of features such as edges, textures, and shapes.

Input data size:	𝑤>∗ ℎ> ∗ 𝑐ℎ>

Filter size: 𝑤K ∗ ℎK ∗ 𝑐ℎK

Output data size: 	M%
N)A0-C

∗ ,%
N)A0-C

∗ 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑖𝑙𝑡𝑒𝑟𝑠
Padding=same

• Filter Parameters: include width, height, and number of input channels (which must match the input’s depth)
• Stride: Step size used to move the filter across the input data. Increasing the stride, reduces the size of output data.
• Padding: Adds extra pixels (usually zeros) around the input to control the spatial size of the output feature map image before 

applying a convolution operation. 

𝑐ℎG = 𝑐ℎJ

• General case: Output data size: 
	M%%M&+3O.--0#P'

N)A0-C'
+ 1 ∗

	,%%,&+3O.--0#P(
N)A0-C(

+ 1 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑖𝑙𝑡𝑒𝑟𝑠
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Input: 3×3×3 Image (Each Pixel Has 3 RGB Channels)
(1,2,3) (4,5,6) (7,8,9)

(10,11,12) (13,14,15) (16,17,18)
(19,20,21) (22,23,24) (25,26,27)

Filter 2×2×3 : 
(1,0, −1) (1,0, −1)
(0,1,0) (−1,1, −1)

Padding=0
Stride=1 Output data size: Q%3

$
+ 1 ∗ Q%3

$
+ 1 ∗ 1

(1,2,3) (4,5,6) (7,8,9)
(10,11,12) (13,14,15) (16,17,18)
(19,20,21) (22,23,24) (25,26,27)

Filter=
(1,0, −1) (1,0, −1)
(0,1,0) (−1,1, −1)Element-wise product

1,2,3 .∗ (1,0, −1) 4,5,6 .∗ (1,0, −1)
10,11,12 .∗ (0,1,0) 13,14,15 .∗ (−1,1, −1) = (1,0,−3) (4,0,−6)

(0,11,0) (−13,14,−15) 1+0−3+4+0−6+0+11+0−13+14−15=−7
Summing all values

Example:

(1,2,3) (4,5,6) (7,8,9)
(10,11,12) (13,14,15) (16,17,18)
(19,20,21) (22,23,24) (25,26,27)

(1,2,3) (4,5,6) (7,8,9)
(10,11,12) (13,14,15) (16,17,18)
(19,20,21) (22,23,24) (25,26,27)

(1,2,3) (4,5,6) (7,8,9)
(10,11,12) (13,14,15) (16,17,18)
(19,20,21) (22,23,24) (25,26,27)

move the filter across the input and perform the same operation:

Output 2×2×1 : −7 −7
−7 −7
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Convolution layer
𝑛$ filter

Input data Output
𝑛$	𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

Convolution layer
𝑛3filter

Output
𝑛3	𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

𝑚$	𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

Filter channels: 𝑚$ Filter channels: 𝑛$

Convolution Layers:
• Filter depth should match the input depth
• The number of filters determines the output depth
• Standard convolution reduces spatial dimensions when stride >=2
• In CNNs, we typically increase the number of channels and decrease the spatial 

size of the feature map before transitioning to Dense (fully connected) layers.

Feature maps are 
flattened into 1D 
vectors before fully 
connected layersFeature

 Map Feature
 Map

Dense (Fully Connected) Layers:
• After convolution, the high-level features are flattened into a vector. 
• This vector is passed through one or more fully connected layers.

Dense (fully connected) layers

Convolutional Neural Network

Input → Conv Layer→ Batch Normalization → Activation → Pooling → Flatten → Dense Layer → Dropout → Dense Layer→ Output

Ø Optional Components:

example: 32×32×3

10 filter of size 4×4×3
stride:2, padding: same

16×16×10
8×8×20

20 filter of size 3×3×10
stride:2, padding: same

1×1280
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Batch Normalization (optional):
• Normalizes feature maps across a batch to speed up training and stabilize learning.
• Helps in faster convergence and reducing internal covariate shift.

𝜇R =
1

𝑚 ∗ 𝑛$ ∗ 𝑛3
o
0I$

S

o
TI$

#"

o
UI$

##

𝑥0TU

m = batch size 
𝐶 = number of channels 
𝑛$	, 𝑛3	= spatial dimensions (height, width)

𝑥 ∈ 𝑅S×#"×##×H

1. Mean: Batch Normalization is applied per channel C, meaning the mean is computed over all 𝑛$×𝑛3×𝑚 spatial elements per channel

Feature Map

2. Variance: Similarly, the variance per channel

𝜎R3 =
1

𝑚 ∗ 𝑛$ ∗ 𝑛3
o
0I$

S

o
TI$

#"

o
UI$

##

𝑥0TU − 𝜇R
3
	

3. Normalization Step: Each element in each channel  is normalized using: r𝑥0TU =
𝑥0TU − 𝜇R
𝜎R3 + 𝜖 small constant for numerical stability

a single element

4. Scale and Shift Step: The learnable scale 𝛾R ∈ 𝑅	 and shift 𝛽R ∈ 𝑅 parameters are applied: 𝑦0TU = 𝛾R r𝑥0TU + 𝛽R

Ø Algorithm:

• For each Channel 𝑪 perform:

• Training: Uses batch statistics (mean/variance computed from the batch). 
• Inference: Uses learned moving average statistics (fixed mean/variance). 𝜇#CM = 1 − 𝛼 𝜇?V- + 𝛼𝜇R

𝜎#CM3 = 1 − 𝛼 𝜎?V-3 + 𝛼𝜎R3 𝛼 ~0.1 momentum

For current channel and batch
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Ø Dropout Layer (optional):
• Randomly disables neurons during training to prevent overfitting. 
• Example: A dropout rate of 0.5 means 50% of the neurons in the specific layer where dropout is applied are randomly turned off during each forward pass.
• Training: Randomly disables neurons to prevent overfitting. Inference: During inference, dropout is disabled — all neurons remain active.

Ø Pooling Layer (optional) 
• It is used to reduce the spatial size of feature maps while retaining the most important 

information.
• Reducing computation (fewer parameters)
• A pooling operation moves a small window (filter) over the input feature map, applying 

an operation like max (Takes the maximum value in each window) or average (Takes 
the average of values in each window) to each window.

1 	 3
5 	 6 	

2 	 4
7 	 8

	9 10
	13 14	

11 12
15 16

4×4  feature map
2×2 filter
stride=2

6 8
14 16

Max 
Pooling

Output data size: >#WB)	N09C	%O??V	X09C
X)A0-C

+ 1

Ø Activation Function (e.g., ReLU) 
• Introduce non-linearity
• Applies element-wise to the elements of input tensor

Input: Image data
Conv Layer: Extracts features using filters (kernels)
Batch Normalization: Normalizes activations before activation
Activation Function (e.g., ReLU): Introduces non-linearity
Pooling (e.g., Max Pooling): Reduces spatial dimensions 
(Optional) More Conv Layers + Pooling: Deeper feature extraction
Flatten: Converts feature maps into a vector for Dense layers
 Dense Layers + Dropout (Fully Connected Layers): Processes extracted features
 Output: Classification (Softmax) or Regression (Linear Activation).

Input → Conv Layer→ Batch Normalization → Activation → Pooling → Flatten → Dense Layer → Dropout → Dense Laye r→ Output
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Layer (type)                Output shape          Param #
---------------------------------------------------------
InputLayer                   (32, 32, 3)       0
Conv  Layer                  (32, 32, 32)     896
BatchNormalization   (32, 32, 32)    128
LeakyReLU                   (32, 32, 32)      0
Conv Layer                   (16, 16, 32)   9,248
BatchNormalization   (16, 16, 32)    128
LeakyReLU                   (16, 16, 32)      0
Conv Layer                   (16, 16, 64)  18,496
BatchNormalization   (16, 16, 64)    256
LeakyReLU                   (16, 16, 64)      0
Conv Layer                   (8, 8, 64)       36,928
BatchNormalization   (8, 8, 64)        256
LeakyReLU                   (8, 8, 64)          0
Flatten                          (4096)              0
Dense                           (128)           524,416
BatchNormalization   (128)            512
LeakyReLU                   (128)                0
Dropout                       (128)                0
Dense                           (10)              1290
Softmax                        (10)

• Example: 
CNN Architecture of Image Classification  (10-Class) Problem

91

Ashkan Jasour

CNN



92

Ø Transpose Convolution Layer: 
Also called Deconvolution or Fractionally Strided Convolution is used to increase the spatial resolution of feature maps, commonly in 
upsampling tasks like image generation and segmentation

• Standard Convolution reduces the spatial size
• Transpose Convolution does the reverse—it increases the spatial size
• It is commonly used in Decoder networks (e.g., U-Net, GANs, Autoencoders).

• Instead of sliding a filter over an image like in normal convolution, Transpose Convolution spreads each input pixel into a larger 
area.

Example (3×3 Input, 2×2 Filter, Stride = 2)
1. Each input pixel is expanded — resembling the inverse of convolution — to cover a larger output region.
2.The filter values are multiplied and added in overlapping regions.
3.The output size becomes larger than the input.
Output data size: 	𝑤>−1 𝑆𝑡𝑟𝑖𝑑𝑒 + 𝑤K − 2𝑃𝑎𝑑𝑑𝑖𝑛𝑔M ∗ 	ℎ>−1 𝑆𝑡𝑟𝑖𝑑𝑒 + ℎK − 2𝑃𝑎𝑑𝑑𝑖𝑛𝑔, ∗ 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑖𝑙𝑡𝑒𝑟𝑠

1 2
3 4

0 1
2 3

Input filter

1 ∗ 0 1
2 3 2 ∗ 0 1

2 3

3 ∗ 0 1
2 3 4 ∗ 0 1

2 3

Output: ((2-1)×1+2)*((2-1)×1+2)

0 1
2 3

0 2
4 6

0 3
6 9

0 4
8 12

0 1
2 3 +

0 2
4 6 + 0 3

6 9
+ 0 4

8 12

0 1 2
2 10 10
6 17 12

• Example
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Ø Masked Convolutional Layer

A masked convolutional layer is a specialized type of convolutional layer used primarily in autoregressive models, such as 
PixelCNN, where it ensures that the output at any given position does not depend on future (yet-to-be-predicted) values.

• In a standard convolutional layer, the entire convolutional kernel is applied to the input, so each output pixel is influenced by 
all pixels within the kernel’s receptive field. Standard convolutions can freely access information from all surrounding pixels.

• In a masked convolutional layer, certain weights are zeroed out (masked) to enforce constraints, such as preventing 
information from future pixels from influencing the current pixel. Masked convolutions enforce causality by limiting access 
to past or adjacent data points, which is crucial for sequential generation.

Example

3×3 Filter
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

3×3 Masked Filter
𝑎 𝑏 𝑐
𝑑 𝑒 0
0 0 0

• To apply convolutional layers to an image in an autoregressive manner, we must first define an ordering for the pixels and 
ensure that the filters can only access past pixels while preventing any influence from future pixels.

• Pixel ordering from top-left to bottom-right ensures autoregressive flow

Types of Masks: 
Mask Type A: Used in the first convolutional layer to ensure that each pixel does not have 
access to itself or future pixels. 
Mask Type B: Used in deeper layers where self-access is allowed but future access is still 
blocked.
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Ø Residual Block
It introduces skip (or shortcut) connections which allow a layer’s input to bypass one or more intermediate layers and be 
added directly to the output. It helps to build deeper networks that can learn more complex patterns without suffering as 
greatly from vanishing gradient and degradation problems.

• Standard Neural Network Block: 𝑦 = 𝑓(𝑥)
where 𝑓 represents one or more layers like convolution, batch 
normalization, and activation

• Residual Block: 𝑦 = 𝑥 + 𝑓(𝑥)
The skip connection directly adds 𝑥 to the output of 𝑓(𝑥). It allows gradients to flow more easily (mitigating vanishing 
gradients)

• Basic Residual Block

ℎ = 𝑅𝑒𝐿𝑈(𝐵𝑁(𝐶𝑜𝑛𝑣(𝑥)))
𝑓(𝑥) = 𝐵𝑁(𝐶𝑜𝑛𝑣(ℎ))
𝑦 = 𝑅𝑒𝐿𝑈(𝑥 + 𝑓(𝑥))

ReLUConv 
Layer

Batch 
Normalization

Conv 
Layer

Batch 
Normalization

ℎ 𝑓
ReLU𝑥 𝑦
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Ø PixelCNN
Combination of masked convolution layers, residual blocks, and a standard convolution layer with a 1×1 filter.

Input Image
   │

   ▼
Masked Conv2D (Type A, 7x7, 64 filters)

   │
   ▼

Residual Blocks (Repeated 5 times)  
   │

   ▼
Masked Conv2D (Type B, 3x3, 64 filters)  (Repeated 2 times)

   │
   ▼

Final Conv2D (1x1, 256 filters) → followed by Softmax over pixel values
   │

   ▼
Generated Pixel Probabilities

• More Information: Van Den Oord, Aäron, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural networks”, International conference on machine learning. PMLR, 2016. 
https://arxiv.org/abs/1601.06759 

95

Example:
• Pixel-by-pixel generation: The network generates 

an image sequentially, one pixel at a time. At each 
step, it predicts a probability distribution over 
possible pixel values for the next pixel.

• Autoregressive Dependency: Ensures that each 
pixel is conditioned only on previously generated 
pixels, enforced through masked convolutions.
 

• Discrete Softmax Output: Instead of predicting 
continuous pixel values, PixelCNN outputs a 
probability distribution over 256 discrete intensity 
levels per pixel (0–255)

Ashkan Jasour
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U-Net Denoising Model

96

• Ronneberger, O., Fischer, P., & Brox, T.,“U-Net: Convolutional networks for biomedical image segmentation”, In Medical Image Computing and Computer-Assisted Intervention (MICCAI), 
2015, https://arxiv.org/abs/1505.04597

• Ho, J., Jain, A., & Abbeel, P. ,”Denoising Diffusion Probabilistic Models”, In Advances in Neural Information Processing Systems (NeurIPS), 2020. https://arxiv.org/abs/2006.11239
• Ho, J., & Salimans, T., “Classifier-Free Diffusion Guidance”, OpenAI, 2022 https://openai.com/research/guided-diffusion
• Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B., “High-Resolution Image Synthesis with Latent Diffusion Models”, In Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (CVPR), 2022 https://arxiv.org/abs/2112.10752
• Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M.,”Hierarchical Text-Conditional Image Generation with CLIP Latents”, 2022 https://arxiv.org/abs/2204.06125
• Foster, David. Generative deep learning. " O'Reilly Media, Inc.", 2022. 
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Ø U-Net Denoising Model (used in diffusion models)
This model has two parts:

• Downsampling : input images are compressed spatially but expanded channel-wise
• Upsampling : representations are expanded spatially while the number of channels is reduced.
• Skip Connections: There are skip connections between equivalent spatially shaped layers in the upsampling and downsampling parts 

of the network. Skip connections allow information to shortcut parts of the network and flow through to later layers. 

Ø Architecture: 
   Inputs: Noisy image and Noise variance (scaler), output: predicted noise on image

1) Input Layers:
• Input image (e.g., 64x64x3) → Conv Layer to increase the number of channels (e.g., 64x64x32)
• Noise variance input (scalar) →  sinusoidal embedding to covert it into a vector (e.g., 1x1x32) → upsampling where the embedding vector is 

copied across spatial dimensions to match the size of the input image (e.g., 64x64x32)
• Concatenate: The two inputs are concatenated across channels (e.g., 64x64x64)

2) Downsampling: The tensor is passed through a series of DownBlock layers that reduce the size of the tensor, while increasing the number of 
the channels, e.g., (e.g., 64x64x64 → → → → 8x8x128). The skip connections will create a shortcuts to Upsampling layers along the way.

3) Residual Block: The tensor is then passed through two ResidualBlock layers that hold the image size and number of channels constant (e.g., 
8x8x128 → 8x8x128).

4) Upsampling: Next, the tensor is passed through a series of UpBlock layers that increase the size of the image, while decreasing the number 
of channels e.g., (e.g., 8x8x128 → 64x64x32). The skip connections incorporate output from the earlier DownBlock Layers.

5) Output Layer: The final Con layer reduces the number of channels to three (RGB), (e.g., 64x64x32 → 64x64x3)
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Ø U-Net Denoising Model
Ø Components:

1) sinusoidal embedding: Goal is to convert a scalar value into a distinct higher dimensional vector. 
A scalar value x is encoded as follows: 

𝑦 𝑥 = sin 2𝜋𝑒DG𝑥 ,… , sin 2𝜋𝑒 �"# G𝑥 , cos 2𝜋𝑒DG𝑥 ,… , cos 2𝜋𝑒 �"# G𝑥
where 𝐿 is chosen to be half the size of the desired noise embedding length and 𝑓 = �� #DDD

�"#
 which controls the maximum frequency used for 

encoding.

2) Residual Blocks: are group of layers that contains a skip connection that adds the input to the output.
An additional 1x1 convolution layer can be used on the skip connection to align channel dimensions with the main path.
e.g., 𝑦 = 𝑥 + 𝑓 𝑥 	where	𝑓 𝑥  has 128 channels and 𝑥 has 256 channels
 𝑦 = 𝑐𝑜𝑛𝑣(𝑥) + 𝑓 𝑥  to match the channel numbers
Conv layer including 128 filters of size 1x1 reduces the channel number of 𝑥 to 128

3) Down and Up Blocks

Batch 
Normalization

Conv Layer Conv Layer

Conv Layer

Residual
Block

Residual
Block

Average
Pooling

Residual Block

Transpose Conv

Residual Block

Concatenate

Concatenate

DownBlock UpBlock
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DownBlock

DownBlock

DownBlock

UpBlock

UpBlock

UpBlock

ResidualBlock ResidualBlock

Concatenate Conv2D

Conv2DUpsampling

Embedding

1×1×1
Noise Variance

Noisy Image Predicted Noise
64×64×31×1×32

64×64×32 64×64×32

64×64×64

32×32×32

16×16×64

8×8×96

8×8×128 8×8×128

16×16×96

32×32×64

64×64×32

64×64×3

DownBlock’s First Residual Block: 
64×64×32
DownBlock’s 2end Residual Block: 
64×64×32 UpSampling2D: 64×64×64

Concatenate:	64×64×96
ResidualBlock: 	64×64×32
Concatenate: 	64×64×64

Concatenate

Concatenate

DownBlock’s First Residual Block: 
32×32×64
DownBlock’s 2end Residual Block: 
32×32×64

DownBlock’s First Residual Block: 
16×16×96
DownBlock’s 2end Residual Block: 
16×16×96

Concatenate

Concatenate

Concatenate

Concatenate

UpSampling2D: 32×32×96
Concatenate:32×32×160
ResidualBlock: 32×32×64
Concatenate: 32×32×128

UpSampling2D: 16×16×128
Concatenate:16×16×224
ResidualBlock: 16×16×96
Concatenate: 16×16×192

Example U-Net Architecture Ashkan Jasour
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Recurrent Neural Networks (RNNs)

100

• Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory”, Neural Computation 9, 1735-1780, 1997, https://www.bioinf.jku.at/publications/older/2604.pdf 
• Kyunghyun Cho et al., “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation”, 2014, https://arxiv.org/abs/1406.1078
• Aaron van den Oord et al., “Pixel Recurrent Neural Networks”, In International conference on machine learning (pp. 1747-1756). PMLR, 2016, https://arxiv.org/abs/1601.06759.
• Tim Salimans et al., "PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications”, 2017, http://arxiv.org/abs/1701.05517
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Ø Recurrent Neural Networks

RNNs are a type of neural network designed for processing sequential data. Unlike feedforward neural networks, RNNs 
have recurrent connections that allow information to persist over time, making them suitable for tasks involving 
sequences, such as time-series prediction, speech recognition, and language modeling.

• Standard RNN 
• LSTM (Long Short-Term Memory)
• GRU (Gated Recurrent Unit)

101

Ashkan Jasour

RNN



102

Ø Standard RNN
• Structure:

• Input layer: Takes sequential data as input.
• Hidden layer with recurrent connections: Maintains a hidden state that evolves over time.
• Output layer: Generates predictions at each time step.

At each time step t, an RNN processes:
1. Current Input (𝒙𝒕 ∈ 𝑹𝒏): The feature vector at time t, e.g., embedding vector of a token
2. Previous Hidden State (𝒉𝒕"𝟏 ∈ 𝑹𝒎): Captures past information, m: number of neurons in the 
dense layer
3. New Hidden State (𝒉𝒕	): Updated using the current input and previous hidden state.

• Hidden State Update:   𝒉𝒕 = 𝝈(𝑾𝒉𝒉𝒕"𝟏 +𝑾𝒙𝒙𝒕 + 𝒃𝒉), Learnable parameters (𝑊2, 𝑊3, 𝑏2) are fixed over time
where, ℎ0 = new hidden state, 𝑊2	= weight matrix for the hidden state, 𝑊3 = weight matrix for the input, 𝑏2	 = bias
, and 𝜎= activation function, typically tanh or  ReLU

• Output Calculation: 𝒚𝒕 = 𝒔𝒐𝒇𝒎𝒂𝒙(𝑾𝒚𝒉𝒕 + 𝒃𝒚), Learnable parameters (𝑊 , 𝑏`) are fixed over time
where, 𝑦0 =	predicted output (e.g., probability distribution over words in a language model), 𝑊 	= weight matrix for the 
output, 𝑏` 	= bias, and the softmax function ensures the output probabilities sum to 1.

cell

𝑥0
ℎ0"#

ℎ0 = 𝜎 𝑊2ℎ0"# +𝑊3𝑥0 + 𝑏2
𝑦0 = 𝑠𝑜𝑓𝑚𝑎𝑥(𝑊 ℎ0 + 𝑏`)

ℎ0 = 𝑓 ℎ0"#, 𝑥0
𝑦0 = 𝑔(ℎ0)

RNN State-space model of dynamical systems

Similar

𝑦0

Dense Layer
(softmax)
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cell

𝑥0
ℎ0"#

cell

𝑥#

𝑦#

cell

𝑥*

𝑦*

cell

𝑥S

𝑦S

cell

𝑥)

𝑦)

ℎ#ℎ( ℎ* ℎS ℎ)"#

Initialize ℎD  (hidden state) with zeros.
• For each time step 𝑡: i) Compute the new hidden state ℎE, ii) Compute the output 𝑦E, iii) Pass ℎE to the next time step. 
• Final output can be: i) at each time step (e.g., in speech recognition), ii) Only at the last step (e.g., text classification).

Single RNN Cell Unrolled RNN

Example: 
𝑥E: embedding vector of token
𝑦E: probability vector over the possible tokens to predict 
the next token

{𝐼𝑑#, 𝐼𝑑*, 𝐼𝑑S, … }

em
be

dd
in

g 
ve

ct
or

 

Input Token seq:

…

𝑥*𝑥# 𝑥S

ℎE = 𝜎 𝑊 ℎE"# +𝑊*𝑥E + 𝑏 
𝑦E = 𝑠𝑜𝑓𝑚𝑎𝑥(𝑊nℎE + 𝑏n)

• When training an RNN, we unroll it over multiple time steps to explicitly show how information propagates over time. This is necessary 
because the same weight matrix 𝑾𝒉 is used at every time step. Since 𝑾𝒉  is reused, the gradient computation must be accumulated 
across all time steps, which is done using Backpropagation Through Time (BPTT).

𝝏𝑳
𝝏𝑾𝒉

= ∑𝒕.𝟏𝑻 𝝏𝑳
𝝏𝒉𝒕

𝝏𝒉𝒕
𝝏𝑾𝒉

  this is because we use same 𝑾𝒉 over time, otherwise we would have c�c§[
6 =

c�
c 6

c 6
c§[

6

𝑦0

Dense Layer
(softmax)

ℎ)
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• Step 2: Training the RNN

1. Collect a corpus (set of sentences) for training. 
Example

"I love machine learning"
"I love deep learning"
"I love natural language processing"
"Deep learning is powerful"
"Machine learning is fascinating"

2. Tokenization: Convert words into numerical 
tokens using a word index. Example:

{'i': 1, 'love': 2, 'machine': 3, 'learning': 4, 'deep': 5, ...}
Each word is assigned a unique integer.

3. Create training sequences: Given a sentence, we 
split it into a set of input-output training sequences.
Each sequence is a partial sentence where the first 
n−1 words are input, and the nth word is the target. 
Example:
Input: ["I"] → Target: "love“    t=1
Input: ["I", "love"] → Target: "machine“ t=2
Input: ["I", "love", "machine"] → Target: "learning“ t=3

4. Padding sequences (optional): Since sequences vary 
in length, shorter sequences are padded to ensure 
uniform input size.

Example: Text generation

• Step 1: Data Preparation

1. Embedding Layer: Words are represented using 
dense word embeddings (learned during training).
Example: "love" → Vector representation (e.g., 
[0.1, 0.4, -0.3, ...]).

2. Recurrent Layer: The RNN processes sequences step 
by step. At each step: The input word’s embedding and 
the hidden state from the previous step are used to 
compute a new hidden state. Example of hidden state 
update ℎ) = 𝜎 𝑊,ℎ)%$ +𝑊\𝑥) + 𝑏, .This enables the 
network to retain contextual information from previous 
words.
3. Output Layer: A fully connected (Dense) layer maps the 
hidden state to a probability distribution over the vocabulary. 
The softmax activation function is applied to predict the most 
likely next word. 𝑦) = 𝑠𝑜𝑓𝑚𝑎𝑥(𝑊]ℎ) + 𝑏])

4.Loss Calculation & Backpropagation: The predicted word is 
compared to the actual next word. The cross-entropy loss is 
computed and used to update the model’s weights using 
backpropagation through time (BPTT).

Step 3: Generating Text 
(Sampling Process)

Once the model is trained, we can 
generate text by predicting the next 
word iteratively:
i) Choose a seed phrase, e.g., "I love".
ii) Convert it to tokens using the same 
word index. 
ii) Feed it into the trained RNN, 
iv) The model predicts the next word’s 
probability distribution. The most 
probable word is selected (or sampled 
with some randomness).
v) Append the predicted word to the 
seed phrase. 
vi) Repeat the process until reaching a 
desired length. This process continues 
until a termination condition is met 
(e.g., reaching a max length or 
predicting an end-of-sequence token).
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Ø Limitations of Standard RNNs 
1. Vanishing Gradient Problem
During backpropagation, gradients become exponentially smaller as they propagate back in time.
This means early time steps have almost no influence on updates, making it hard to learn long-range dependencies.
The recurrent weight matrix 𝑊,   is repeatedly multiplied during backpropagation. If its eigenvalues are <1,  gradients shrink toward zero → vanishing gradient 
problem . 
Impact: The RNN forgets long-term dependencies and struggles with sequences that require long memory (e.g., long sentences, paragraphs). Solution: Use LSTM / 
GRU (gated architectures)

3.  Exploding Gradient Problem: If the weight matrix 𝑊,  has large eigenvalues, gradients can become excessively large. This leads to unstable training, where 
weight updates diverge instead of converging. Solution: Use gradient clipping to cap the gradient values.

2. Short-Term Memory: Due to vanishing gradients, Standard RNNs tend to capture only short-term dependencies. 
Example problem: Given the sentence: "The cat, which was sitting on the mat, is very cute.“ A standard RNN may struggle to associate "cat" with "cute" because 
too many words separate them.
Impact: Standard RNNs struggle with long-term dependencies. Solution: Use LSTM / Transformer models

4. Difficulty in Parallelization: RNNs process inputs sequentially, meaning each step depends on the previous step. Unlike CNNs (which process in parallel), RNNs 
cannot fully utilize GPUs for fast computation.
Impact: Training on large datasets is slow and inefficient. Solution: Use Transformer-based architectures

5. Fixed-Length Memory (Hidden State Size): The hidden state ht has a fixed size, regardless of input length.
This means: i) The network has limited capacity to store information., ii) It compresses too much information, leading to information loss. Solution: Use Attention 
Mechanisms to dynamically focus on relevant information

6. Sensitivity to Input Order: RNNs are order-sensitive, meaning a small word order change can alter predictions drastically. Solution: Use Bidirectional RNNs or 
Transformers, which capture both forward and backward context.
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Ø LSTM (Long Short-Term Memory)

LSTMs are an advanced variant of Recurrent Neural Networks (RNNs) designed to handle long-term dependencies by 
overcoming the vanishing gradient problem. Unlike standard RNNs, which only have a single hidden state (𝒉𝒕	), LSTMs 
introduce a cell state (𝒄𝒕) and gating mechanisms to control the flow of information.

• Key Components of an LSTM Cell
Each LSTM cell contains:

1.Cell State (𝒄𝒕): Stores long-term information.
2.Hidden State (𝒉𝒕): Short-term memory used for predictions.
3.Forget Gate (𝒇𝒕	): Determines how much of the previous cell state 𝒄𝒕"𝟏	to retain or discard. 𝒇𝒕 contains values 
between 0 (forget everything) and 1 (keep everything).
4.Input Gate (𝒊𝒕	): Decides how much new information to store. Contains values between 0 and 1.
5.Candidate Cell State (o𝒄𝒕	): New candidate memory. Contains values. 
6.Output Gate (𝒐𝒕	): Controls what part of the cell state is passed to the hidden state.

• Why Is LSTM Better for Long-Term Dependencies?
• Cell state (𝑐0) carries information across many time steps without being completely overwritten.
• Forget gate (𝑓0) prevents memory overflow, ensuring old, unnecessary information is removed.
• Input (𝑖0) and output gates (𝑜0) regulate memory updates, making training more stable.
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𝑓0 = 𝜎 𝑊9[ℎ0"#, 𝑥0] 	+ 𝑏9 𝑖0 = 𝜎 𝑊&[ℎ0"#, 𝑥0] 	+ 𝑏&

�̃�0 = 𝑡𝑎𝑛ℎ 𝑊a[ℎ0"#, 𝑥0] 	+ 𝑏a

𝑐0 = 𝑓0 . 𝑐0"# + 𝑖0 . �̃�0
• Update Cell State: long-term information

candidate memory content

Input gate: Decides how much 
new information should be added 
to the cell state.

Previous Cell state 

Forget gate: Decides how much 
of the previous cell state should 
be forgotten 

ℎ0 = 𝑜0 . tanh(𝑐0)

Determines which portion of the cell state 
contributes to the hidden state.

𝑜0 = 𝜎 𝑊b[ℎ0"#, 𝑥0] 	+ 𝑏b

• Update Hidden State: short term information

LSTM cell

𝑥0

𝑦0

𝑐0"#
ℎ0"#

𝑦0 = 𝑠𝑜𝑓𝑚𝑎𝑥(𝑊 ℎ0 + 𝑏`)

• The probability distribution over all possible outputs (e.g., words in vocabulary 
for text generation).

Dense Layer
(softmax)

𝑐0

Element-wise 
products
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Ø Stacked LSTMs

A Stacked LSTM consists of multiple LSTM layers where the hidden state ℎ0 from one LSTM layer is used as the input 
to the next LSTM layer. This allows the model to learn more complex representations.

ℎ0
# , 𝑐0

(#) = 𝐿𝑆𝑇𝑀(#)(𝒙𝒕, ℎ0"#
# , 𝑐0"#

(#) )

ℎ0
* , 𝑐0

(*) = 𝐿𝑆𝑇𝑀(*)(𝒉𝒕
𝟏 , ℎ0"#

* , 𝑐0"#
(*) )

2-Layer Stacked LSTM:

𝑦0 = 𝑠𝑜𝑓𝑚𝑎𝑥(𝑊 𝒉𝒕
(𝟐) + 𝑏`)
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Ø Gated Recurrent Unit (GRU) 

GRUs are similar to LSTMs and are designed to solve the vanishing gradient problem while being computationally 
more efficient than LSTMs (good for real-time application).

How is GRU Different from LSTM?

Ø GRU has only two gates (LSTM has three including Forget, Input, Output):
• Reset Gate (𝑟0): Controls how much past information to forget. The values are between 0 and 1.
• Update Gate (𝑧0	) : Decides how much past information to keep and how much new information to add.

• The forget and input gates are replaced by reset and update gates.
• There is no cell state and output gates. Instead, it directly updates the hidden state
• GRUs are computationally more efficient than LSTMs due to having fewer parameters

𝑟0 = 𝜎 𝑊c[ℎ0"#, 𝑥0] 	+ 𝑏c

𝑧0 = 𝜎 𝑊$[ℎ0"#, 𝑥0] 	+ 𝑏$ ªℎ0 = 𝑡𝑎𝑛ℎ 𝑊2[𝑟0 . ℎ0"#, 𝑥0] 	+ 𝑏2

ℎ0 = 1 − 𝑧0 . ℎ0"# + 𝑧0 . ªℎ0

Update Gate Candidate Hidden State

𝑦0 = 𝑠𝑜𝑓𝑚𝑎𝑥(𝑊 ℎ0 + 𝑏`)

Reset Gate
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Transformers

• Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin, “Attention is all you need”, Advances in neural information 
processing systems 30, 2017, https://arxiv.org/pdf/1706.03762 

• Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. "Improving language understanding by generative pre-training." 2018, https://cdn.openai.com/research-
covers/language-unsupervised/language_understanding_paper.pdf 

• J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” Proceedings of NAACL-HLT, 2019. 
https://arxiv.org/abs/1810.04805 
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• Attention Mechanism
• Transformer Block Structure
• Full Transformer Model Architecture
• Transformer Model Training
• Transformer Inference

Ø Transformers

“Attention is All You Need”, Google Brain, 2017
For sequential modeling, we don’t need complex recurrent or convolutional architecture, but instead only rely on attention mechanism. 
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• Self-Attention: 
• Captures relationships between words regardless of distance.
• Computes attention scores to determine the importance of words in a sentence.

Ø Attention Mechanism
Attention is a mechanism that allows a model to focus on specific parts of an input sequence when processing data. It computes a 
weighted sum of input values based on their relevance. Self-attention determines relationships of words within the same sequence.

Attention Formula: 𝐴𝑡𝑡𝑒𝑛𝑠𝑡𝑖𝑜𝑛 𝑄,𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 �¨^

s_
𝑉

• Input sequence consists of 𝑛	tokens, where each token is represented  as an embedding vector of size 𝑑: 	
• Input matrix: 𝑋 ∈ 𝑅)×,)
• Learnable Weight matrices: 𝑊E , 𝑊F  ∈ 𝑅,)×,* and 𝑊G ∈ 𝑅,)×,+
• Query magrx: 	𝑄 ∈ 𝑅)×,* = 𝑋𝑊E  
• Key matrix : 𝐾 ∈ 𝑅)×,* = 𝑋𝑊(
• Value matrix: 𝑉 ∈ 𝑅)×,+ = 𝑋𝑊G  
• 𝑑( : dimension of each query/key vector and 𝑑H : dimension of each value vector, while 𝑑: 	is the dimension of embedding vector of each token.
• Raw Attention Scores: 𝑄𝐾I ∈ 𝑅)×)  pair-wise attention score for all input tokens. Each value in 𝑄𝐾I  represents the raw relevance score of how much a token (Query row) 

should give to another token (key column), Higher values → Stronger relevance or focus between two tokens.

• Scaled Attention Scores: EF
,

,*
 ∈ 𝑅)×)

• Attention Weights (normalized Scores): 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 EF,

,*
∈ 𝑅)×)  , The softmax normalizes attention scores across each row.

• Attention output: Context Matrix Z = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 EF,

,*
𝑉 ∈ 𝑅)×,+ weighted sum of 𝑉	weighted by the attention scores.

Learnable Weights:
𝑊E ∈ 𝑅,%×,&
𝑊F ∈ 𝑅,%×,&
𝑊: ∈ 𝑅,%×,'

Input matrix: 
𝑋 ∈ 𝑅#×-)

Query: 𝑄 ∈ 𝑅#×-*
Key: 𝐾 ∈ 𝑅#×-*
Value: 𝑉 ∈ 𝑅#×-+

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 `a,

-*
𝑉 ∈ 𝑅#×-+AOenPon Weights:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾I

𝑑(
∈ 𝑅)×) Each token’s embedding representation is updated 

based on its relationships with other tokens.

𝑋 ∈ 𝑅#×-) → 𝑍 ∈ 𝑅#×-+ Updated 
embeddings

Initial
embeddings

Usually 𝑑b = 𝑑C
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• Query (Q): Represents what a token is looking for in the input sequence.
• Key (K): Represents the encoded content of each token, used for comparison.
• Value (V): Represents the actual content of each token that is passed to the next layer.

Ø Analogy: Library Book Search

Imagine you're in a library looking for a book:
• Query (Q) → What you are searching for (your question).
• Key (K) → The labels/tags in the library catalog (the system’s index for books).
• Value (V) → The actual content of the book you find.

Ø Query, Key, Value

1. You have a question (Query, Q):
• Let's say you're searching for "Quantum Mechanics".
• Your question represents the Query (Q).

2. The librarian searches in the catalog (Key, K):
• The library system contains many Keys (K) that describe different books (e.g., 

"Quantum Mechanics," "Machine Learning," etc.).
• Each Key (K) helps match a query to the right book.

3. The librarian retrieves the book (Value, V):
• Once a match is found (best matching Key), the librarian gives you the actual 

book.
• The book’s content represents the Value (V).

Ø Interpretation

Ø Raw Attention Scores 𝑄𝐾j ∈ 𝑅0×0 
• Computes a similarity measure between each query and every key.
• Each value in 𝑄𝐾I	represents the raw relevance score of how much attention a 

token (Query row) should give to another token (Key column).
• Higher values → Stronger relevance or focus between two tokens.

Tokens The cat sat on the mat

The 1.2 0.8 0.3 -0.1 1.0 0.4

cat 0.9 1.5 0.7 0.2 0.8 0.3

sat 0.2 0.5 1.8 1.0 0.6 0.9

on 0.1 0.3 1.2 2.0 0.5 0.8

the 0.7 0.6 0.4 0.2 1.3 1.1

mat 0.5 0.4 0.8 1.2 1.0 1.6

Example: 
Sequence: “The cat sat on the mat”

row: "sat", column: "mat“
Value = 0.9
This means "sat" attends to "mat" with moderate importance. This makes sense 
because "sat" relates to "mat" as the object of the action.

Value (sat → on) = 1.0 (higher than sat → mat)
"sat" has a stronger relationship with "on" because "sat on" is a direct phrase.

Ø Dot Product (𝑄𝐾8) Interpretation
• If Q and K are aligned in the same direction → 𝑄𝐾I	is positive (high similarity).
• If Q and K are orthogonal (unrelated) → 𝑄𝐾I	is near zero.
• If Q and K are opposite in direction → 𝑄𝐾I	is negative (low similarity).

𝑄𝐾8 ∶

Ø After training, the model learns original embedding vectors (word/token 
representations) and learnable weight matrices that result in Attention 
scores that correctly capture token relationships in various sentences.  
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Ø Causal Masking

Since GPT and other autoregressive models generate text one token at a time, they must ensure that each token:
• Can attend to past tokens (leftward attention).
• Cannot attend to future tokens (prevents cheating).

Without causal masking, the model would see future words while training, making the learning process unrealistic for real-world text generation.

Ø The attention score matrix 𝑄𝐾8 	has a shape of (𝑛×𝑛), where n is the sequence length.
A triangular mask is applied to set all future token attention scores to negative infinity (−∞) before softmax.
This forces the softmax function to assign zero probability to future tokens.

𝑄𝐾O  =   [✓  ✗  ✗  ✗  ✗
✓  ✓  ✗  ✗  ✗
✓  ✓  ✓  ✗  ✗
✓  ✓  ✓  ✓  ✗
✓  ✓  ✓  ✓  ✓]

Where:
•✓ (Allowed): The current token can attend to itself and past tokens.
•✗ (Blocked): The current token cannot attend to future tokens.

Ø The masked attention scores become: 𝑄𝐾O +𝑀
Where M is a lower triangular matrix. It has
• 0 in the lower triangular part (tokens can attend to themselves and previous tokens).
• −∞ in the upper triangular part (future tokens are masked).

• After applying softmax, all −∞ values become zero probability, preventing future tokens from being attended to.
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Ø Multi-Head Attention

Multi-head attention is an extension of the self-attention mechanism in Transformers that improves the model’s ability to capture different types of 
relationships between words in a sequence.
• This allows the model to focus on multiple relationships simultaneously, e.g., One head may focus on grammatical structure, another head may focus on 

semantic meaning and another head may focus on long-range dependencies.

Ø Instead of applying a single self-attention operation, multi-head attention (MHA):
• Splits the input embeddings into multiple smaller subspaces, e.g., 𝑑, =

-)
,

 where h is number of the attention heads and 𝑑C  is the size the original 
embedding vectors

• Applies self-attention separately to each subspace (each called an "attention head").
• Combines the outputs from all heads before passing them to the next layer.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄,𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑#, ℎ𝑒𝑎𝑑i, … , ℎ𝑒𝑎𝑑  𝑊¬
where:
• Each head performs independent self-attention.
• The outputs are concatenated and transformed using a weight matrix 𝑊?.

1. Instead of using a single Q,K, V for self-attention, we create multiple versions: 𝑄0 ∈ 𝑅#×-( = 𝑋𝑊`
0  ,   𝐾0 ∈ 𝑅#×-( = 𝑋𝑊U

0 , 	 𝑉0 ∈ 𝑅#×-( = 𝑋𝑊c
0 	 𝑖 = 1,… , ℎ 

where, ℎ	is the number of heads and 𝑑, =
-)
,

, and	𝑊`
0 , 𝑊U

0  , 𝑊c
0  are learnable weight matrices.

𝐴𝑡𝑡𝑒𝑛𝑠𝑡𝑖𝑜𝑛0 𝑄,𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 `-a-
,

-(
𝑉0 ∈ 𝑅#×-( , 𝑖 = 1,… , ℎ 2. Attention for Each Head:

3. Concatenate Heads:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑$, ℎ𝑒𝑎𝑑3, … , ℎ𝑒𝑎𝑑, 	𝑊? ∈ 𝑅#×-)
where 𝑊? is a learned weight matrix

∈ 𝑅)×,( ∈ 𝑅)×,(
𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑$, ℎ𝑒𝑎𝑑3, … , ℎ𝑒𝑎𝑑, ∈ 𝑅#× ,∗-( = 𝑅#×-)
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Learnable Weights:
𝑊E ∈ 𝑅,%×𝒅𝒌
𝑊F ∈ 𝑅,%×𝒅&
𝑊: ∈ 𝑅,%×𝒅𝒗

Input matrix: 
𝑋 ∈ 𝑅#×-)

Query: 𝑄 ∈ 𝑅#×𝒅*
Key: 𝐾 ∈ 𝑅#×𝒅*
Value: 𝑉 ∈ 𝑅#×𝒅+

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 `a,+e
-*

𝑉 ∈ 𝑅#×𝒅𝒗AOenPon Weights 
(with causal masking):

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾I +𝑀

𝑑(
∈ 𝑅𝒏×𝒏

Each token’s embedding representation is updated 
based on its relationships with other tokens.

𝑋 ∈ 𝑅#×-) → 𝑍 ∈ 𝑅#×𝒅𝒗 Updated 
embeddings

Initial
embeddings

Multi-Head Attention:

Self Attention:

Learnable Weights:
𝑊E

& ∈ 𝑅,%×𝒅𝒉
𝑊F

& ∈ 𝑅,%×𝒅𝒉
𝑊:& ∈ 𝑅,%×𝒅𝒉

Input matrix: 
𝑋 ∈ 𝑅#×-)

Query: 𝑄$ ∈ 𝑅#×𝒅𝒉
Key: 𝐾$ ∈ 𝑅#×𝒅𝒉
Value: 𝑉$ ∈ 𝑅#×𝒅𝒉

ℎ𝑒𝑎𝑑$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 `"a",+e"

-(
𝑉$ ∈ 𝑅#×𝒅𝒉

AOenPon Weights 
(with causal masking):

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄&𝐾&I +𝑀&

𝑑L
∈ 𝑅𝒏×𝒏

Learnable Weights:
𝑊E

L ∈ 𝑅,%×𝒅𝒉
𝑊F

L ∈ 𝑅,%×𝒅𝒉
𝑊:L ∈ 𝑅,%×𝒅𝒉

Query: 𝑄, ∈ 𝑅#×𝒅𝒉
Key: 𝐾, ∈ 𝑅#×𝒅𝒉
Value: 𝑉, ∈ 𝑅#×𝒅𝒉

AOenPon Weights 
(with causal masking):

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄L𝐾LI +𝑀L

𝑑L
∈ 𝑅𝒏×𝒏 ℎ𝑒𝑎𝑑, = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 `(a(

,+e(

-(
𝑉,  ∈ 𝑅#×𝒅𝒉

𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑&, ℎ𝑒𝑎𝑑', … , ℎ𝑒𝑎𝑑L 	𝑊8 
∈ 𝑅)×𝒅𝒆

𝑋 ∈ 𝑅#×-) → 𝑍 ∈ 𝑅#×-) Updated 
embeddings

Initial
embeddings

ℎ: 	number of heads
𝑑, =

-)
,

:  dimension of each attention head

116

Ashkan Jasour

Transformers



117

Ø Transformer Block Structure
A single Transformer block consists of:
1. Input 𝑿 ∈ 𝑹𝒏×𝒅𝒆   where 𝒏 = Sequence length (number of tokens in input) and 𝒅𝒆	= Embedding dimension (hidden size).
2. Layer Norm: �𝑿𝒂𝒕𝒕 = 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎 𝑿  
3. Multi-Head Self-Attention layer to compute attention across tokens (Context learning): 𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 �𝑿𝒂𝒕𝒕  
4. Add Residual Connections: 𝑿𝒂𝒕𝒕 = 𝑿 +𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 �𝑿𝒂𝒕𝒕
5. Layer Norm: �𝑿𝒇𝒇𝒏 = 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎 𝑿𝒂𝒕𝒕 	    
6. Feedforward Neural Network (FFN) (to introduce non-linearity).
 Apply a two-layer feedforward network with ReLU/GELU activation: 𝑭𝑭𝑵(�𝑿𝒇𝒇𝒏) = 𝐦𝐚𝐱 𝟎, �𝑿𝒇𝒇𝒏𝑾𝟏 + 𝒃𝟏	 𝑾𝟐 + 𝒃𝟐

where, feedforward weight W$ is a projection matrix to a larger dimension, and W3 is a projection back to 𝑑C , and	b$and 
b3are biases.

7. Add Residual Connections:  𝑿𝒇𝒊𝒏𝒂𝒍 = 𝑿𝒂𝒕𝒕 + 𝑭𝑭𝑵(�𝑿𝒇𝒇𝒏)

Ø Note that The input and output of a Transformer Block have the same shape 𝑹𝒏×𝒅𝒆

Ø Layer Normalization: Normalizes activations across the feature dimension (i.e., embedding dimension 𝒅𝒆), ensuring that the mean is 0 and variance is 1. 

𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎 𝑿 =
𝑿 − 𝝁
𝝈

𝛾 + 𝛽	 where 𝛾0 , 𝛽0 	𝑖 = 1,…𝑑C 	are Learnable scaling and shi}ing parameters.

𝑿 ∈ 𝑹𝒏×𝒅𝒆
Embedding vector of token 1, normalize the vector using its mean and variance

Embedding vector of token n, normalize the vector using its mean and variance

[Normalized embedding vector] ⊙[𝛾$:-)] +𝛽$:-)
element-wise multiplication[Normalized embedding vector] ⊙[𝛾-:/!] +𝛽-:/!

• Each token's embedding vector is normalized independently using its own mean and variance.

Mult-Head 
Attention Layer

Layer 
Normalization

Feed-Forward 
Layer

Layer 
Normalization

Residual
Connection

Residual
Connection

𝑿𝒂𝒕𝒕 = 𝑿 +𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎 𝑿
𝑿𝒇𝒊𝒏𝒂𝒍 = 𝑿𝒂𝒕𝒕 + 𝑭𝑭𝑵(𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎 𝑿𝒂𝒕𝒕 )

(Pre-LayerNorm) Transformer Block
• LayerNorm is applied BEFORE both Multi-Head Attention and Feed-Forward layers
• Residual connections are added AFTER each sub-layer
• More stable training for deep networks. Gradient-friendly due to normalization 

before each operation.

𝑿 ∈ 𝑹𝒏×𝒅𝒆

𝑿𝒇𝒊𝒏𝒂𝒍 ∈ 𝑹𝒏×𝒅𝒆

³𝑿 ∈ 𝑹𝒏×𝒅𝒆

𝑿𝒂𝒕𝒕 ∈ 𝑹𝒏×𝒅𝒆

³𝑿𝒇𝒇𝒏 ∈ 𝑹𝒏×𝒅𝒆
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Ø Full Transformer Model Architecture
• A Transformer model consists of multiple stacked Transformer blocks with an embedding layer at the input and a final output layer.

1. Token + Positional Embeddings
• Token embedding: Convert input tokens into dense vector representations (learned embedding vector).
• Positional Embedding: Add position information to embeddings. Since Transformers have no recurrence, positional encoding is added to maintain word order.

2. Stacked Transformer Blocks:	 𝑿 ∈ 𝑹𝒏×𝒅𝒆 → 𝑿𝒇𝒊𝒏𝒂𝒍 ∈ 𝑹𝒏×𝒅𝒆

3. Output Layer:
• Convert processed embeddings into predictions.
• Fully connected layer followed by softmax to generate the distribution over token space.
• Softmax is applied separately to each row of the logits matrix, converting them into 

probability distributions over the vocabulary.

Ø Token + Positional Embeddings
Token Embedding:
• Each input word (token) is mapped to a dense vector representation.
•  𝑿𝒕𝒐𝒌𝒆𝒏 ∈ 𝑹𝒏×𝒅𝒆   where 𝒏 = Sequence length (number of tokens in input) and 𝒅𝒆	= Embedding dimension (hidden size).

These embeddings are learned during training.

embedding vector 

𝑥3

𝑥$

𝑥#

token

𝑿𝒕𝒐𝒌𝒆𝒏 ∈ 𝑹𝒏×𝒅𝒆
Positional Encoding (PE):
• Since Transformers do not have recurrence (like RNNs), they need Positional Encodings to inject word order information into the model.
 𝑿𝒊𝒏𝒑𝒖𝒕 ∈ 𝑹𝒏×𝒅𝒆 = 𝑿𝒕𝒐𝒌𝒆𝒏 + 𝑿𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
• It provides unique positional values for each token in the sequence.
• Sinusoidal Positional Encoding: 𝑷𝑬𝒑𝒐𝒔,𝟐𝒊 = 𝒔𝒊𝒏( 𝒑𝒐𝒔

𝟏𝟎𝟎𝟎𝟎
𝟐𝒊
𝒅𝒆

), 𝑷𝑬𝒑𝒐𝒔,𝟐𝒊+𝟏 = 𝒄𝒐𝒔 𝒑𝒐𝒔

𝟏𝟎𝟎𝟎𝟎
𝟐𝒊
𝒅𝒆

, 𝒊 = 𝟏,… , 𝒅𝒆 
even indices odd indices

𝑥3

𝑥$

𝑥#

token

𝑷𝑬𝒑𝒐𝒔,𝟐𝒊𝑷𝑬𝒑𝒐𝒔,𝟐𝒊X𝟏
i=1i=2

pos is an integer the token’s position in the sequence, 𝒊 is the feature index in embedding vector ranging from 1 to 𝒅𝒆
𝑿𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 ∈ 𝑹𝒏×𝒅𝒆• Positional Encoding is Fixed (not learnable.)

Turns integer into a dense vector
𝑥4 → 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑣𝑒𝑐𝑡𝑜𝑟

Turns integer into a dense vector
𝑥4 → 𝑝𝑜𝑠	𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑣𝑒𝑐𝑡𝑜𝑟

𝑳𝒐𝒈𝒊𝒕𝒔 ∈ 𝑹𝒏×𝑽 = 𝑿𝒇𝒊𝒏𝒂𝒍𝑾𝒐𝒖𝒕 + 𝒃
𝑿𝒇𝒊𝒏𝒂𝒍 ∈ 𝑹𝒏×𝒅𝒆
𝑾𝒐𝒖𝒕 ∈ 𝑹𝒅𝒆×𝑽 (independent of input sequence size)
𝒃 ∈ 𝑹𝑽 the same bias vector is added to each row of matrix, 
 e.g.,  𝑿𝒇𝒊𝒏𝒂𝒍𝑾𝒐𝒖𝒕 𝒊, : + 𝒃, 𝒊 = 𝟏,…𝒏
𝑽: Vocabulary size

→ 𝑺𝒐𝒇𝒕𝒎𝒂𝒙 𝑳𝒐𝒈𝒊𝒕𝒔 𝒊, : ,
	 𝒊 = 𝟏,…𝒏
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In Transformer training, we process the entire sequence at once and compute 𝒏 probability distributions in parallel (one for each token position).
• Transformers are designed to process sequences in parallel.
• The model predicts all next tokens at once, unlike RNNs that predict one token at a time.

Ø Transformer Model Training

Ø Everything is done in parallel, making training efficient!

1. Tokenization/Embedding/Positional Encoding:  Input text → Tokens → IDs → Embeddings + Positional Encoding ∶ 	𝑿 ∈ 𝑹𝒏×𝒅𝒆
2. Forward Pass: 
  𝑿 ∈ 𝑹𝒏×𝒅𝒆(Input embeddings + Positional encoding) →Stacked Transformer Blocks (Multi-Head Attention/LayerNorm/Feedforward Network) ∈ 𝑹𝒏×𝒅𝒆  →Output Layer 

(computes logits ∈ 𝑹𝒏×𝑽	)

3. Compute output Probabilities (𝒏 probability distributions): The model predicts all next tokens at once instead of generating them sequentially like an RNN.
Softmax is applied to the logits to generate 𝑛 n probability distributions (one for each token position, output probabilities ∈ 𝑹𝒏×𝑽

4. Compute Losses: 
• The predicted probability distribution is compared with the true label. 
• The loss function (Cross-Entropy Loss) measures how far the prediction is from the correct token. 

4. Backpropagation & Gradient Descent:
• Compute gradients of the loss with respect to model parameters.
• Optimizer (e.g., Adam, AdamW) updates weights of: 

 Token embeddings, Multi-Head Attention parameters (𝑊` , 𝑊a ,𝑊c 	for all heads and transformer blocks), Feedforward layers

5. Repeat this process for all training data across multiple epochs.

𝐿 = −o
0I$

#

𝑦0log( r𝑦0)
where:
• 𝑛 = Number of tokens in the sentence.
• 𝑦4	true probability (one-hot).
• |𝑦4	 is the predicted probability from softmax.

Input: Full sequence 𝑿 ∈ 𝑹𝒏×𝒅𝒆
Output: 𝒏 probability distributions over the vocabulary
Loss: Compute 𝒏 losses, average them, then update parameters
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Training data: “The cat sat on the mat.”

Ø Example:

Token Token ID

"The" 32

"cat" 120

"sat" 45

"on" 78

"the" 32

"mat" 210

"." 10

Embedding ( de=4)

[0.2, -0.1, 0.5, 0.3]

[0.4, 0.7, -0.3, 0.8]

[0.1, 0.6, -0.5, 0.9]

[0.5, -0.2, 0.7, 0.3]

[0.2, -0.1, 0.5, 0.3]

[-0.4, 0.9, 0.1, -0.6]

[0.6, 0.3, -0.1, 0.2]

𝑿𝒕𝒐𝒌𝒆𝒏 ∈ 𝑹𝒏5𝟕×𝒅𝒆5𝟒

0.2 −0.1 0.5 0.3
0.4 0.7 −0.3 0.8
0.1 0.6 −0.5 0.9
0.5 −0.2 0.7 0.3
0.2 −0.1 0.5 0.3
−0.4 0.9 0.1 −0.6
0.6 0.3 −0.1 0.2

0.0      1.0      0.0      1.0
0.841  0.54  0.009   0.999
0.909  0.41  0.018   0.999
0.951  0.3    0.027   0.999
0.978  0.2    0.036   0.999
0.993  0.1    0.045   0.999
1.0      0.0    0.054    0.999

𝑿𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 ∈ 𝑹𝒏5𝟕×𝒅𝒆5𝟒
(Masked)Attention weights ∈ 𝑹𝒏5𝟕×𝒏5𝟕 

“The”  “cat”      “sat”   “on”    “the”  “mat”     “.”
“The”  1.000   0.000   0.000  0.000   0.000  0.000   0.000
“cat”    0.462   0.537   0.000  0.000   0.000  0.000   0.000
“sat”    0.250   0.337   0.412  0.000   0.000  0.000   0.000
“on”     0.164   0.221   0.284  0.330   0.000  0.000   0.000
“the”   0.118   0.160   0.205  0.251   0.264  0.000   0.000
“mat”  0.095   0.122   0.156  0.191   0.211  0.222   0.000
“.”        0.079   0.097   0.118  0.152   0.168  0.186   0.196

Input Token "cat" (Target) "sat" "on" "the" "mat" "." Other Tokens 
(Rest of V)

"The" 0.98 0.01 0.002 0.003 0.002 0.001 0.002

"cat" 0.002 0.95 0.02 0.01 0.01 0.002 0.006

"sat" 0.001 0.02 0.97 0.005 0.002 0.002 0.0005

"on" 0.001 0.005 0.002 0.99 0.001 0.001 0.0002

"the" 0.001 0.002 0.002 0.02 0.94 0.03 0.005

"mat" 0.0005 0.002 0.003 0.01 0.03 0.99 0.0005

Computed Probabilities ∈ 𝑹𝒏5𝟕×𝑽 Loss function

• "The" → True next word: "cat" → 𝐿𝑜𝑠𝑠& = − 1 ×	log (0.98)

• "cat" → True next word: "sat" → 𝐿𝑜𝑠𝑠' = − 1 ×	log (0.95)

• "sat" → True next word: "on" → 𝐿𝑜𝑠𝑠] = − 1 ×	log (0.97)

• "on" → True next word: "the" → 𝐿𝑜𝑠𝑠^ = − 1 ×	log (0.99)

• "the" → True next word: "mat" → 𝐿𝑜𝑠𝑠_ = − 1 ×	log (0.94)

• "mat" → True next word: "." → 𝐿𝑜𝑠𝑠` = − 1 ×	log (0.99)

𝑿 = 𝑿𝒕𝒐𝒌𝒆𝒏 + 𝑿𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝐿𝑜𝑠𝑠 = −o
0I$

#Iy

𝑦0log( r𝑦0) = −o
0I$

#Iy

𝐿𝑜𝑠𝑠0
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Ø Transformer Inference

(GPT) Inference Process
• Input Processing
 Convert input text into tokens.
 Convert tokens into embeddings.
 Add positional encoding.
•  Autoregressive Decoding
 The first token (e.g., <BOS> or a given prompt) is passed through the Transformer.
 The model predicts the next token using softmax probabilities.
 The predicted token is appended to the input sequence.
 The updated sequence is fed into the model to predict the next token.
 Steps are repeated until a stopping condition is met (e.g., max length, end token <EOS>).

(GPT) Inference Strategies

• Greedy Decoding
 Selects the most probable next token at each step.
 Fast but may produce repetitive or suboptimal text.
• Beam Search
  Instead of choosing the single most likely token at each step (as in greedy decoding), beam search keeps track of multiple candidate sequences 

(beams) simultaneously, and selects the best.
 More diverse but computationally expensive.
• Top-k Sampling
 Chooses from the top-k most probable next tokens, adding randomness.
• Nucleus Sampling (Top-p)
 Selects from the smallest set of tokens whose cumulative probability exceeds  𝑝
 More flexible and avoids low-probability words.

Temperature parameter to control the randomness of the sampling process
Temperature 0: choose next token with highest probability (deterministic)
Temperature 1: next token is chosen with the probability outputted by the 
model (random)
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Ø Transformers
1. Parallelization & Efficiency

• Unlike RNNs, which process sequentially, Transformers process entire sequences at once using the self-attention mechanism.
• This allows for faster training on GPUs/TPUs.

2. Long-Range Dependencies 
• RNNs and LSTMs struggle with long-term dependencies due to vanishing gradients.
• Transformers use self-attention, allowing them to capture dependencies between tokens that are far apart in the sequence.

3. Contextual Understanding 
• Unlike traditional word embeddings, Transformers generate context-dependent embeddings (e.g., "bank" in "river bank" vs. "bank account" has 

different meanings).
• This improves machine translation, question answering, and summarization

4. Versatility & Transfer Learning 
• Pre-trained Transformers (GPT, BERT, T5) can be fine-tuned for various tasks (e.g., chatbots, code generation, medical diagnosis).
• One model → many applications.

Ø Different Transformer Models
• Encoder-only models (e.g., BERT) → Best for understanding input 

(classification, embeddings, question answering).

• Decoder-only models (e.g., GPT) → Best for generating text 
(chatbots, text generation).

• Encoder-Decoder (Seq2Seq) models (e.g., T5, BART) → Best for 
tasks like translation and summarization.

Feature Encoder-Only (BERT) Decoder-Only (GPT) Encoder-Decoder (T5, BART)

Best for Understanding Generation Sequence-to-sequence

Attention Type Full self-attention Masked self-attention Encoder: Full, Decoder: Masked

Examples BERT, RoBERTa GPT-3, GPT-4, ChatGPT T5, BART, Pegasus

Use Cases Text classification, 
embeddings Chatbots, code generation Translation, summarization
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Feature Transformer RNN (including LSTM, GRU)

Architecture Self-attention mechanism Sequential processing with recurrent 
connections

Parallelization Highly parallelizable (processes 
all tokens at once) 

Not parallelizable (processes tokens one at a 
time) 

Processing 
Speed Faster due to parallelism Slower since tokens are processed sequentially 

Scalability Efficient on large datasets Struggles with long sequences 

• Architecture & Processing:

Ø Transformer Vs RNN

Feature Transformer RNN (including LSTM, GRU)

Memory of 
past inputs

Uses self-attention, allowing direct 
connections between distant words 

Struggles with vanishing gradient problem 
(hard to retain long-term dependencies) 

Context 
Awareness Captures entire context at once Needs multiple time steps to understand long-

term relationships 

• Handling Long-Range Dependencies:

Feature Transformer RNN (including LSTM, GRU)

Time 
Complexity

O(𝒏𝟐) in standard self-attention, but 
optimized versions (Linformer, 
Longformer) reduce this 

O(n) (scales linearly with sequence length)

Memory Usage High (stores all pairwise attention scores) Lower (only stores hidden states) 

• Computational Complexity:

Feature Transformer RNN (including LSTM, GRU)

Training Speed Faster (leverages parallelism and 
batch processing) 

Slower (sequential updates lead to longer training 
times) 

Gradient 
Stability

More stable gradients (avoids 
vanishing gradient issue) Prone to vanishing gradient problem in deep RNNs 

• Training Efficiency:

Feature Transformer RNN (including LSTM, GRU)

Interpretability Hard to interpret ("black box") More interpretable (hidden states carry 
meaning) 

Flexibility Can handle multimodal tasks (text, vision, 
speech) 

Mostly used for sequential text/audio 
processing 

• Interpretability & Flexibility:

Feature Transformer (GPT, BERT) RNN (LSTM, GRU)

Processing Type Parallel (all tokens at once) Sequential (one token at a time) 

Inference Speed Fast on GPUs/TPUs Slow due to recursion 

Memory Usage High (stores attention scores) Lower (only stores hidden states) 

Best for Long 
Sequences?

Yes (handles long-range 
dependencies well) No (loses context over long sequences)

Best for Real-Time 
Applications?

High inference latency and 
memory usage limit real-time 
deployment.

Yes (low-latency, smaller footprint)

• Inference Speed & Efficiency:
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Ø Cross Attention Mechanism

• Query (Q) comes from the latent tokens (latent patches in ViTs, DiTs#): 
• 𝑄 ∈ 𝑅)×-4 = 𝑋v𝑊v 
• Input matrix: 𝑋v ∈ 𝑅)×-5(latent space).

• Key (K) and Value (V) come from the condizoning embeddings*	(e.g., text embeddings): 
•	 𝐾 ∈ 𝑅+×-4 = 𝑋wT𝑊w   and 𝑉 ∈ 𝑅+×-6 = 𝑋wT𝑊T  
• Input matrix: 𝑋wT ∈ 𝑅+×-5  (text encoder embeddings).

Example: Cross-attention in text-to-image models
Latent tokens (Q) "look at" the text embeddings (K, V) to generate relevant images. Cross-attention allows latent tokens 
to selectively attend to and incorporate semantic information from the conditioning input (e.g., text). Thus, the model 
learns to condition the generation process on text descriptions.

• Cross Attention Formula: Cross𝐴𝑡𝑡𝑒𝑛𝑠𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 vw7

-4
𝑉 ∈ 𝑅)×-5

2 : See Multimodal Models section.
1 : See ViTs and DiTs sections.
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• To combine transformer models with other generative AI models, we first need to “tokenize each input modality 
appropriately.

ØTransformer-based Gen-AI models

• Text: Needs to be tokenized into subwords or word-pieces.

• Images: Split into patches and flattened into sequences.

• Audio: Tokenized using spectrograms or by converting spectrograms into discrete tokens (e.g., via VQ-VAE or HuBERT).

• Multimodal: Each modality gets preprocessed/tokenized differently, then unified in a shared embedding space.
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Vision Transformers (ViTs)

• Dosovitskiy, Alexey, et al. “An image is worth 16x16 words: Transformers for image recognition at scale”, In ICLR 2021. https://arxiv.org/pdf/2010.11929 
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Ø Vision Transformers (ViTs)

127

Key Characteristics of Vision Transformers (ViT):

1. Fully Transformer-Based
• Replaces CNNs entirely with Transformer blocks.
• Uses attention across patches rather than convolutions.

2. Patch-Based Tokenization
• The image is split into non-overlapping patches, each treated as a “word token” in NLP.

3. Positional Embeddings
• Since Transformers are permutation-invariant (i.e., they don’t inherently preserve order), ViT adds positional embeddings to retain 
spatial layout.

4. Scales Well with Data
• Performs better than CNNs when trained on large datasets (e.g., JFT-300M).
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Ø Vision Transformers (ViTs)

128

1) Image Tokenization
• Input image 𝑥 ∈ 𝑅z×F×H  (e.g., 224×224×3) is split into fixed-size non-overlapping patches 𝑃×𝑃(e.g., 16×16).
• Each patch (∈ 𝑅O×O×H) is flattened into a vector (𝑅O# .H 	) and linearly projected to a D-dimensional embedding space.

Patches : 𝑥 = [𝑥($), 𝑥(3), … , 𝑥(=)],  each flattened patch (vector) 𝑥(0) ∈ 𝑅O# .H 	

•𝐻×𝑊	: image resolution (e.g., 224 × 224)
•𝐶	: number of image channels (e.g., 3 for RGB)
•𝑃×𝑃: patch size (e.g., 16 × 16)
•𝑁 = z.F

O#
	: number of patches

•D: Transformer embedding dimension (e.g., 768 or 1024)

• 𝑊C ∈ 𝑅(O
# .H)×~: learnable weight matrix that maps each patch vector to a Transformer token 

embedding of size D. Hence, projected patch token is: 𝑥(0)𝑊C ∈ 𝑅~ ,				𝑥(0) ∈ 𝑅O
# .H →	𝑥(0)𝑊C ∈ 𝑅~

• 𝑥RV.NN ∈ 𝑅~: learnable token with the same dimension as the patch tokens.
• Concatenating all tokens : 𝑧1 = [𝑥RV.NN , 𝑥 $ 𝑊C , … , 𝑥 = 𝑊C] ∈ 𝑅 =+$ ×~ 	
• 𝐸W?N ∈ 𝑅 =+$ ×~: positional embedding, same shape as 𝑧1 

Tokens: 𝑧1 = 𝑥RV.NN , 𝑥 $ 𝑊C , … , 𝑥 = 𝑊C + 𝐸W?N ∈ 𝑅 =+$ ×~ 	

2) Transformer Encoder
• The sequence of patch tokens is processed by standard Transformer encoder blocks:

• Multi-head Self-Attention (MSA)
• MLP blocks with LayerNorm (LN) and residuals

𝑧V� = 𝑀𝑆𝐴 𝐿𝑁 𝑧V%$ + 𝑧V%$
𝑧V = 𝑀𝐿𝑃 𝐿𝑁 𝑧V� + 𝑧V�

• This is repeated for L layers (e.g., 12 or 24 layers): 𝑧1 → 𝑧$ → ⋯ → 𝑧E
3) Classification Head
• After Transformer encoding, the final output of the [class] token is passed to a linear classifier: 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊,C.- . 𝑧E

RV.NN ∈ 𝑅a   (A vector of class 
probabilities after softmax.

where, 𝑧E
(RV.NN) ∈ 𝑅~  is the first row (the class token embedding) of the final output 𝑧E ∈ 𝑅 =+$ ×~ 	

•The class token is designed to aggregate global information from all other tokens via attention. After the final layer, it is used as the representation of the entire 
image for classification.
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Diffusion Transformers (DiTs)

• Peebles W, Xie S. “Scalable diffusion models with transformers”, In Proceedings of the IEEE/CVF international conference on computer vision 2023 
(pp. 4195-4205). https://arxiv.org/abs/2212.09748 
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Ø Diffusion Transformers (DiTs)

• Diffusion-based generative models that utilize a pure Transformer architecture—instead of the conventional U-Net—to predict noise or 
perform denoising in diffusion models.

• Unlike typical diffusion models (e.g., Stable Diffusion, which uses a convolutional U-Net with self-attention), DiTs entirely replace 
convolutional layers with Transformer blocks, resulting in a fully attention-based noise prediction model.

Ø Key Characteristics of Diffusion Transformers (DiTs):

• Fully Transformer-Based: Instead of a convolutional or hybrid architecture, DiT uses pure Transformer blocks (self-attention + MLP 
layers) for diffusion-based denoising.

• Tokenization of Latent Space: The latent image# representation is divided into a sequence of tokens (patches). Each token is a small 
latent patch, similar to Vision Transformers (ViT).

• Noise Prediction via Attention: Noise prediction at each diffusion step is handled entirely by multi-head self-attention across latent 
tokens, leveraging the Transformer's powerful modeling capabilities.

• No Convolutional Layers: DiTs rely solely on attention mechanisms and positional embeddings for spatial information, removing the 
need for convolutional inductive biases.

1: See Latent-Space Diffusion Model section in Algorithm section.
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• Peebles W, Xie S. “Scalable diffusion models with transformers”, In Proceedings of the IEEE/CVF international conference on computer 
vision 2023 (pp. 4195-4205). https://arxiv.org/abs/2212.09748 
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Ø Diffusion Transformers (DiTs)
1) Latent Space Tokenization:
• Latent representation 𝑧)  at diffusion step 𝑡 is split into fixed-size tokens (similar to ViT’s patches): 

𝑧) = [𝑧)
$ , 𝑧)

3 , … , 𝑧)
(=)]

2) Positional Embeddings:
• Add positional embeddings to tokens to encode spatial structure.

3) Forward diffusion and Transformer-Based Noise Prediction:
• Forward diffusion process:  𝑧1

$ , 𝑧1
3 , … , 𝑧1

= → 𝑧$
$ , 𝑧$

3 , … , 𝑧$
= → ⋯ → 𝑧8

$ , 𝑧8
3 , … , 𝑧8

=  where 𝑧)
0 = ª𝜶𝒕𝑧1

(0) + 1 − ¬𝛼)𝜖)
0 , 𝜖)

0 ∈ 𝑅~~𝑁(0, 𝐼)
• Transformer blocks (self-attention + MLP layers) predict the noise added at timestep t:

𝑧) = 𝑧)
$ , 𝑧)

3 , … , 𝑧)
= → 𝜖)

$ , 𝜖)
3 , … , 𝜖)

=  where 𝜖)
0  ∈ 𝑅~ , 𝐷: embedding size of each token 

This process predicts noise in the latent tokens directly, as in standard diffusion.

4) Iterative Denoising:
• At inference, start from noisy latent space and iteratively apply DiT Transformer to remove noise, eventually decoding back to pixel space

In latent diffusion models (like Stable Diffusion or DiTs), the latent representation 𝑧)  at timestep t is typically a 3-dimensional tensor (not just a single flat 
vector): 𝒛𝒕 ∈ 𝑹𝑪×𝑯×𝑾 where C is the Number of latent channels (e.g., 4 for Stable Diffusion), and H, W: Spatial dimensions of the latent feature map (e.g., 
64×64, 32×32). Example:

• Original latent tensor: 𝑧) 	 ∈ 𝑅�×Q3×Q3
• Patch size (e.g., 8×8): each patch covers an 8×8 area in spatial dimension
• Each patch dimension before flattening: 4×8×8, Flattened patch size (D)=256 (embedding vector size of a token)
• Number of tokens:  Q3

�
× Q3

�
= 16

• Resulting sequence: 𝑧) = [𝑧)
$ , 𝑧)

3 , … , 𝑧)
($y)] with each token 𝑧)

(0) ∈ 𝑅~I3�y
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5) From Latent to Image:
After the final denoised latent, we use a decoder — typically from a pre-trained autoencoder (like VAE) — to reconstruct the full image. 
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Attention-Based U-Net

• Oktay, O., Schlemper, J., Le Folgoc, L., Lee, M., Heinrich, M., Misawa, K., Mori, K., & Rueckert, D., “Attention U-Net: Learning Where to Look for the Pancreas”, arXiv preprint 
arXiv:1804.03999, 2018, https://arxiv.org/abs/1804.03999 

Ashkan Jasour

https://arxiv.org/abs/1804.03999


133133

ØAttention-based U-Net:
Standard U-net (used in diffusion models) works well, but convolution has a local receptive field and inductive bias. To improve global 
reasoning (especially for text-guided generation), attention or cross-attention is injected ( e.g., Text Conditioned Image Generator, cross 
attention between text embedding and image latent tokens ).

Component Standard U-Net Attention-Based U-Net

Feature Extractor Conv layers + ResBlocks Same, but with optional self-attention layers at certain depths

Long-Range Dependencies Limited to local regions Attention enables global context modeling (image-wide and text-wide)

(Text) Conditioning Often not used or concatenated to input channels Uses cross-attention between image features and text embeddings. Uses cross-
attention blocks throughout the U-Net (especially in the mid and upsampling paths)

• Comparison: Standard U-Net vs. Attention-Based U-Net

1. Self-Attention in U-Net Blocks
• Applied at specific layers (e.g., bottleneck) to capture global spatial dependencies
• Instead of just convolutions, add Multi-Head Self-Attention (MHSA) on the flattened spatial tokens

1: Check Cross Attention Mechanism section

2. Cross-Attention with Text Embeddings
• Latent tokens (from image) serve as queries
• Text tokens (from prompt) serve as keys and values
• Implemented using standard a�ennon$

• How Transformer/Attention Is Injected

• Where Are Attention Modules Placed ?
Usually inside or between residual blocks in the U-Net. 
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[Text Embeddings] ↓

U-Net
Input Image

   ↓

[Downsampling Path]
   DownBlock 1: ResNet + Downsample (e.g., AvgPool or strided Conv)

   - DownBlock 2: ...
   - DownBlock 3: ...

   ↓
[Mid Block]
   Self-Attn

↓ 
  Cross-Attn (text)

   ↓

[Upsampling Path]
   - UpBlock 1: Upsample (e.g., TransposeConv) + ResNet + Concatenate with Skip from DownBlock

   - UpBlock 2
   - ...

↓
         Final Generated Image

◄─────── Downsample & extract features

◄─────── Optional: latent ↔ latent

◄─────── Injects text information

◄─────── Receives latent embedding updated with text information
              

◄─────── In the latent Diffusion, we use the “input latent”
                     obtained by applying a VAE encoder to the input image

◄─────── In the latent Diffusion, we apply VAE Decoder to U-net’s output  to   
                      obtain the original image

Example:

134
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U-Net vs. DiT in Diffusion Models

Aspect U-Net (e.g., Stable Diffusion) DiT (Diffusion Transformer)

Core Architecture Convolutional U-Net with skip connections Transformer architecture similar to Vision Transformers (ViTs)

Input Format 3D tensor (latent: 𝐶	×	𝐻	×	𝑊) 3D tensor, tokenized into 1D sequence of flattened latent patches

Downsampling / Upsampling Explicit down and up blocks using Conv/Pooling and TransposeConv No explicit up/downsampling; uses token embeddings across layers

Feature Processing Convs + ResNets capture local features; attention (optional) for long-range Global modeling via self-attention over all tokens

Text Conditioning Cross-attention layers in mid & up path (latent ↔ text tokens) Cross-attention layers at each transformer block (tokens ↔ text)

Skip Connections Between down and up blocks (spatial level) None — attention operates globally, with positionally encoded tokens 
preserving structure

Training Target Predict noise ̂𝜖. in latent space Same — predict noise ̂𝜖. for each latent token

Spatial Awareness Built-in due to convolutions Requires positional embeddings to preserve spatial structure

Inference Process Iteratively denoise latent 𝑧. → 𝑧3, decode with VAE Same: denoise sequence of latent tokens 𝑧. → 𝑧3, then decode with VAE

Memory & Scale Efficiency Efficient for high-resolution images (due to patch-wise computation) May require more memory due to full self-attention over large token 
sequences

Popular Examples Stable Diffusion v1.x, Imagen, DALL·E 2 U-Net DiT (Peebles & Xie), Stable Diffusion XL (partially uses DiT)
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Multimodal Models

• Aditya Ramesh et al., "Zero-Shot Text-to-Image Generation," February 24, 2021, https://arxiv.org/abs/2102.12092.
• Aditya Ramesh et al., "Hierarchical Text-Conditional Image Generation with CLIP Latents", 2022, https://arxiv.org/abs/2204.06125.
• Alec Radford et al., "Learning Transferable Visual Models From Natural Language Supervision,", 2021, https://arxiv.org/abs/2103.00020.
• Alex Nichol et al., "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", 2021, https://arxiv.org/abs/2112.10741
• Chitwan Saharia et al., "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, 2022, https://arxiv.org/abs/2205.11487
• Foster, David. Generative deep learning. " O'Reilly Media, Inc.", 2022.

136

Ashkan Jasour

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2205.11487


137137

Ø Multimodal Models

Multimodal models involve training generative models to convert between different types of data, such as generating 
images from text descriptions (text-to-image), converting speech to text (speech-to-text), or generating video from a 
sequence of images and sound (image-and-audio to video).

Example Modalities:
• Text-to-Image: e.g., DALL·E generates pictures based on text prompts.
• Speech-to-Text: e.g., Whisper transcribes spoken language into written text.
• Image Captioning: e.g., CLIP-like models generate descriptive text from an image.
• Text-to-Speech: e.g., Tacotron synthesizes human-like speech from text.
• Video Generation: e.g., Generating a short video from a script or sequence of images and audio.
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Ø Multimodal Transformer

A Multimodal Transformer is a model that takes inputs from multiple modalities—like images + text—and learns to 
process them jointly by fusing them in a shared transformer-based architecture.

Key Components: 

• Image Encoder: Uses a CNN or Vision Transformer (ViT) to turn an image into a set of visual feature tokens. 

• Text Encoder: Uses a language model (e.g., GPT) to tokenize and embed the caption text. 

• Multimodal Fusion Layer (Cross-Attention): Combines image and text features using cross-modal attention, allowing one 
modality (e.g., text) to guide the other (e.g., image).

• Output Head: Can be a classification head (e.g., “is the caption correct for this image?”) or a generation head (e.g., 
generate a caption).

Here's the high-level overview of training a text-to-image model:
Text Prompt → Text Encoder → Conditioned Image Generator → Output Image

138
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Ø Common Image/Text Encoders

139

Image Encoder Type Description Typical Output

CNN-based Encoders Uses Convolutional Neural Networks (CNNs) to extract multi-scale spatial 
features from image of shape 𝑅H×z×F Feature maps 𝑅H4×z4×F4

 or compressed vectors 𝑅-

VAE Encoders Probabilistic encoders that map image to mean and variance for sampling 
latent variables which can be a vector or tensor Mean and variance of vector/tensor

Vision Transformers (ViTs) Split images into patches, embed them, and model global relationships 
using Transformer layers Sequence of patch embeddings 𝑅=5678( 	×	-9:;)<

U-Net Encoder (in Diffusion) Downsampling path of a U-Net (Residual Blocks and Convolutions) that 
maps the input image into progressively lower-resolution feature maps. Multi-scale feature maps 𝑅H4×z4×F4

Text Encoder Type Description Typical Output

Transformer-based Encoders Encode text sequences using self-attention layers applied on the sequence 
of the text tokens Sequence of token embeddings 𝑅=7:*)$	×	-9:;)<

T5 Encoder Text-To-Text Transfer Transformer; maps input text into a sequence of 
latent embeddings for generation tasks. Sequence of embeddings 𝑅=7:*)$	×	-9:;)<

LSTM/GRU Encoders Use sequential RNNs to encode text token-by-token; historically common, 
now less used in GenAI.

Final hidden state vector or full sequence of hidden 
states

(Image+Text) Encoder Type Description Typical Output

Cross-modal Models 
(CLIP, Flamingo)

Dual encoders (image encoder + text encoder) that map image and text 
into a shared vision-language embedding space.

Aligned embedding vectors (e.g., 𝑅~) in a joint 
space
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Text Prompt → Text Encoder → Conditioned Image Generator → Output Image

140

Text prompt
    ↓

Transformer-based text encoder (to generate the text embeddings, often similar to GPT)
    ↓

Diffusion model (U-Net + Classifier-Free Guidance (CFG))
    ↓

Iterative denoising (conditioned on text)
    ↓

Generated image

• The text embeddings are used to condition the image generation process — meaning, the model will reference the text context during each denoising step 
in the diffusion process. 

• Text embeddings are injected into the U-Net at each denoising step (e.g., via cross-attention or concatenation).

• Latent Diffusion: A U-Net-based diffusion model denoises a latent tensor (compressed image representation e.g., Input image: [B, 3, 512, 512], After VAE 
encoder: [B, 4, 64, 64]). This happens over many time steps.

• Classifier-Free Guidance (CFG) improves text-image alignment by steering the output toward the text semantics. 
• Classifier-Free Guidance (CFG):

• Generates two predictions: one conditioned on the prompt and one unconditioned.
• Combines them to amplify alignment with the text without needing a separate classifier. 

Linear Combination (CFG Formula) with the guidance scale.

• Once the denoised latent is obtained, it’s passed through a decoder to reconstruct the full-resolution image (Upsamples latent representation to 
reconstructs full-resolution image.

DALL·E 3
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Ø Multimodal Models

We examine the following architectures:

• DALL.E 2 and CLIP from OpenAI
• Stable Diffusion from Stability AI
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Ø DALL.E 2 from OpenAI

Text embedding Image embedding

Text encoder DecoderPrior
Input prompt Generated Image

• Given a batch of N (image, text) pairs, CLIP is trained to identify which of the N × N possible image-text 
pairings in the batch are the true matches. 
•Text Encoder: Each caption i is passed through a Transformer-based text encoder, producing a text embedding 
Tᵢ ∈ R~. 
• Image Encoder: Each image i is passed through a Vision Transformer (ViT) or CNN, producing an image 
embedding Iᵢ ∈ R~. 
• CLIP learns a shared image-text embedding space by jointly training the encoders using a contrastive loss:

• The cosine similarity between the embeddings of the N correct (image, text) pairs is maximized 
• The similarity between all N² − N incorrect (mismatched) pairs is minimized .
•This contrastive objective enables CLIP to align image and text modalities in a way that supports zero-
shot transfer across a wide range of vision-language tasks. 

Reference: Radford, Alec, et al. Learning Transferable Visual Models From Natural Language Supervision. ICML, 2021. https://arxiv.org/abs/2103.00020 

• Text encoder: converts the text prompt into an embedding vector that represents the conceptual meaning of the text prompt within a latent space. 
• CLIP: Contrastive Language-Image Pre-training (CLIP) uses contrastive learning to match images with text descriptions. 

• Contrastive Learning: trains 2 transformers, a text encoder to convert text to a text embedding (employed in DALL.E 2 text encoder) and 
an image encoder to convert an image to an image embedding. Given a batch of text-image pairs, we compare all text and image 
embedding combinations using cosine similarity and train the network to maximize the score between matching text-image pairs and 
minimize the score between incorrect text-image pairs.
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Ø DALL.E 2 from OpenAI

Text embedding Image embedding

Text encoder DecoderPrior

• (Diffusion) Prior: Converts text embedding into a CLIP image embedding.
• Training: each CLIP text and image embedding pair → concatenated into a single vectors → image embedding is noised to turn into random 

noise in several steps → diffusion prior is trained to predict the denoised image embedding conditioned on the text embedding.
• To generate a new image embedding, we sample a random vector, prepend the related text embedding and pass it through the trained 

diffusion prior.

Input prompt Generated Image

• Decoder: Generates the final image conditioned on the text prompt and the predicted image embedding output by the prior 
• GLIDE: generates realistic images from text prompts working directly with the raw text prompts instead of CLIP embeddings. It is trained 

as diffusion model with U-net for denoiser and Transformer for the text encoder to generate text embedding used to guide the U-net 
through out the denoising process. It also has an Upsampler trained to scale the generated image. 

• Text encoder: converts the text prompt into an embedding vector that represents the conceptual meaning of the text prompt within a latent space. 
• CLIP: Contrastive Language-Image Pre-training (CLIP) uses contrastive learning to match images with text descriptions. 

• Contrastive Learning: trains 2 transformers, a text encoder to convert text to a text embedding (employed in DALL.E 2 text encoder) and 
an image encoder to convert an image to an image embedding. Given a batch of text-image pairs, we compare all text and image 
embedding combinations using cosine similarity and train the network to maximize the score between matching text-image pairs and 
minimize the score between incorrect text-image pairs.
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Encoder

Decoder

Diffusion 
Process

Denoising 
U-net

Latent 
representation

Predicted Latent 
representation Random noise 

(Latent space)

Input Image

Predicted Image

Text
Encoder

Text 
Caption

TRAINING

GENERATION

(Used for training only)Ø Stable Diffusion

Text embedding

Cross-Attention (used in Stable Diffusion):
•The latent tokens attend to the text tokens via cross-attention layers inside the U-Net.
•This lets the model “align” visual features with text features.

•The Denoising U-Net is conditioned on the text embedding to guide the denoising 
process: 𝑈 − 𝑛𝑒𝑡 𝑧., 𝑡, 𝑒 ⇒ ̂𝜖.

•	𝑧.: the current noisy latent at timestep t
• 𝑡: the diffusion timestep (used via timestep embedding)
• 𝑒: the text embedding used as a conditioning vector
• ̂𝜖. : precited noise at at diffusion timestep t

Ashkan Jasour
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Ø Foundation Models:
Large models trained on broad, diverse data using self-supervised learning, capable of generalizing across many tasks.

Characteristics:
• Trained on massive unlabeled datasets (e.g., web, books, code).
• Learn general representations useful for many downstream tasks.
• Often used in zero-shot, few-shot, or fine-tuned ways.
• Require high compute and data for training.

Pros:
• Can be adapted to many tasks.
• Reduce the need for task-specific model design.
• Enable transfer learning and rapid prototyping.

Key Technologies Foundation Models:
• Transformers (attention-based architecture)
• Large-scale parallel training
• Distributed optimization (e.g., Adam, LAMB, ZeRO)
• Prompt engineering and instruction tuning
• Reinforcement Learning from Human Feedback (RLHF)
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Ø Foundation Models:

Examples:
• GPT-3, GPT-4: language tasks
• CLIP: image-text understanding
• DINO, MAE:  vision tasks
• BERT, T5, PaLM, Gemini:  multiple modalities

Modality Foundation Model Examples Based on Language Model?

Language GPT-3/4, BERT, T5, PaLM Yes

Vision MAE, DINO, ViT (Vision Transformer), SAM No

Audio Whisper, AudioMAE, Wav2Vec 2.0 No

Code Codex, AlphaCode, Code LLaMA Yes (language modeling applied to code tokens)

Multimodal CLIP, Flamingo, Gemini, GPT-4V, Kosmos-1 Partially (many use a language model as one component)

Robotics RT-2 (Google), GR00T (NVIDIA) Partially (many use a language model as one component)

Example Categories:
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Ø Foundation Models
How to use foundation models for specific tasks:

Ø Transfer Learning:
 1. Inference-Based (Prompt-Based): Zero-Shot, Few-Shot
 2. Training-Based: Feature Extraction (Frozen), Partial Fine-Tuning, Full Fine-Tuning

1. Inference-Based Transfer Learning
(a.k.a. Prompt-Based Learning — no model training involved)

• The pretrained model is used as-is, with no weight updates.
• Task-specific information is provided via prompts or examples 

during inference.
Includes:
• Zero-Shot Learning: No examples are provided; only instructions.
• Few-Shot Learning: A few task-specific examples are included in the prompt.

2. Training-Based Transfer Learning
• The pretrained model is further trained (i.e., weights are updated) on the target task.
• This allows better task-specific performance at the cost of training time and compute.

Includes:
• Partial Fine-Tuning: Only a subset of layers (e.g., the top few) are updated.

• Full Fine-Tuning: All layers are updated on the new task. Take a pre-trained model and train it further on a specific 
labeled dataset, usually with a task-specific loss function(we change the weights of the model to adapt it better to the new 
task). Example: Fine-tune GPT-3 on customer support emails to build a virtual assistant tailored for technical support.

• Feature Extraction (Frozen Encoder + Trainable Head): Base model is frozen; only a small head is trained. Only 
use the model to extract features or representations from input data. Then use those features as input to a separate model 
(usually a small classifier or regressor) that you do train.

Zero-Shot Learning
Example:
Prompt: "Classify this email: 'Congratulations! You've won a free 
cruise. Click here to claim your prize.'"
Output: "Spam"

Few-Shot Learning
Example:
Prompt: Classify the email content:
 "Your Amazon receipt for the headphones is attached." → Not Spam 
 "Earn $$$ working from home. No experience needed!" → Spam 
  "Your weekly newsletter from Stack Overflow." → ?
Output: "Not Spam"

Fine-Tuning
Example: Fine-tuning GPT on a legal document Q&A dataset 
to build a legal assistant chatbot.
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Typical pipeline𝟏 for building foundation models:

1. Unsupervised Pretraining (Self-Supervised Learning)
• The model is trained on a massive corpus of unlabeled data using self-supervised objectives (e.g., masked token prediction, next token 

prediction).
• Example: GPT is trained to predict the next word in a sentence (causal language modeling).

2. Supervised Fine-Tuning (Optional)
• The model is fine-tuned on smaller, labeled datasets to specialize in specific tasks (e.g., summarization, classification).
• This step injects task-specific knowledge.

3. Reinforcement Learning from Human Feedback (RLHF)
• The model’s responses are improved using human preference data.
• A reward model is trained on human ratings, and the model is fine-tuned using reinforcement learning (e.g., PPO) to generate preferred 

outputs.

1: Not all foundation models go through all three steps. Some stop at step 1 or 2 depending on their use case.

Ø Foundation Models:
Ashkan Jasour
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Ø Examples of Robotics Foundation Models

Ø RT-2 (Robotics Transformer 2) - Google DeepMind (2023)
• Model Basis:

• Builds on Vision-Language Models (VLMs) like PaLI-X and Flamingo
• Multimodal pretraining: leverages web-scale data (images + language) to build visual and semantic understanding
• Then fine-tuned on robotic data to map vision + text to actions
• Learns to execute long-horizon, language-driven robotic tasks

• Key Idea: Transfer web-scale vision-language knowledge to the robotics domain with minimal robotic data. 
Brohan, Anthony, et al. "RT-2: Vision-language-action models transfer web knowledge to robotic control."
arXiv preprint arXiv:2307.15818, https://arxiv.org/pdf/2307.15818 (2023).
https://robotics-transformer2.github.io/

Ashkan Jasour

Foundation Models

https://arxiv.org/pdf/2307.15818
https://robotics-transformer2.github.io/


151151

Image ∈ 𝐑224 × 224 × 3	
    ↓

Split into non-overlapping patches (e.g., 16 × 16 pixels)
(224 / 16)^2 = 196 patches

    ↓
196 patches ∈ 𝐑16×16×3

    ↓
Flatten each patch: 16×16×3 = 768 → patch vector ∈ R768

    ↓
Matrix of flattened patches: 𝐑196×768

↓
Linear projection to embedding dim D (e.g., D = 768, 1024)
→ (Projected patch matrix + Positional encoding) ∈ R196×D

    ↓
Patch embedding matrix  : 𝐑196×D

↓
ViT  Processes sequence of patch embeddings through transformers 

↓
ViT Output ∈ 𝐑196×D

Text (e.g., "Pick up the blue block")
    ↓

Tokenizer → e.g., 20 tokens
    ↓

Each token is mapped to an embedding D-dimensional vector
(Token Embedding + Positional Encoding) ∈ R20×D

    ↓
Token embedding matrix : 𝐑20×D  (token + positional encodings)

↓
Concatenate Vision + Text: [196 + 20, D] = [216, 768]

    ↓
Transformer (LLM-based)

    ↓
Outputs a sequence of discrete tokens, e.g., 6 action tokens: [132, 114, 128, 5, 25, 156]

These tokens come from a learned action vocabulary (e.g., 32,000 tokens)
↓

De-tokenizer (learned mapping from tokens to continuous control)
[132, 114, 128, 5, 25, 156] → = [0.1, -0.2, 0.0, 10°, 25°, -7°] 

↓
Robot action = [ΔT, ΔR] ∈ 𝐑⁶

where,  
ΔT ∈ 𝐑³ : [Δx, Δy, Δz]= [0.1, -0.2, 0.0] (translation)

ΔR ∈ 𝐑³ : [Δroll, Δpitch, Δyaw]= [10°, 25°, -7°] (rotation)2

1
3
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Ø Examples of Robotics Foundation Models

Ø GR00T N1: An Open Foundation Model for Generalist Humanoid Robots, NVIDIA
• Designed to enable humanoid robots to perform a wide range of tasks through a unified model.
• Key Features:

• Multimodal inputs: Vision (images/video), proprioception (e.g., joint states), and language instructions.
• Transformer-based architecture: Inspired by language models like GPT, GR00T tokenizes all input streams and processes them via a large transformer.
• Tokenized world representation: Everything — vision, commands, joint angles, actions — is encoded as a sequence of tokens, enabling generalization and 
compositionality.
• Pretraining and fine-tuning: Trained on diverse robot behaviors, simulated environments, and large-scale human demonstrations.
• Modularity: Can control various types of humanoid robots (arms, hands, legs) in both simulation and real-world environments. 
•Open Model: NVIDIA aims to make GR00T a foundation for embodied AI research, releasing the model and code to the public.

  

• Paper: “GR00T N1: An Open Foundation Model for Generalist Humanoid Robots” by NVIDIA, 20205, 
https://arxiv.org/pdf/2503.14734 
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GR00T N1 Model Architecture

• A diffusion transformer (DiT) processes the robot’s proprioceptive state (e.g., joint states) and noised action tokens, and uses cross-attention to 
condition on image and text tokens, from the Eagle-2 VLM backbone. It outputs denoised motor actions over the time steps 𝑡 through 𝑡 + 𝐻 − 1. 
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GR00T N1 Model Architecture

ØMLP-based State and Action Encoder: 
• To process states and actions of varying dimensions across different robot embodiments, GR00T uses an MLP per embodiment to project them 

to a shared embedding dimension  (conceptually similar to CLIP’s multimodal embedding space, where it maps image and text to the same 
embedding space) as input to the DiT. 

• The Action Encoder MLP also encodes the diffusion timestep together with the noised action vector.

Why Include the Timestep: In diffusion models, the same model is used at all timesteps, but its behavior must change with the timestep. So the model needs to 
know what step it’s on. Usually, this is done by encoding the diffusion timestep into a vector and injecting it into the model, often via addition or conditioning. 
This is similar to positional encoding in transformers — it gives the model a sense of “where in the process” it is.

Ø Vision-Language Module
• For encoding vision and language inputs, GR00T N1 uses the Pre-trained model (Eagle-2 vision-language model (VLM)) pretrained on 

Internet-scale data. 
• Images are encoded at resolution 224 × 224 followed by pixel shuffle (Shi et al., 2016), resulting in 64 image token embeddings per frame 

(image patch), e.g., shape = [64 × D].
• The image tokens and the textual task description (like “Put the orange on the plate”) are passed together into the Eagle-2 LLM 

component (a large transformer).
• The text is in “chat format”, meaning it mimics conversational instructions, consistent with how Eagle-2 was trained.
• The LLM processes: i) Vision tokens (64/image), 2) Language tokens, 3) and fuses them into a joint embedding space.
• Output of the Vision-Language Module: The output is a tensor of shape:  batch_size × sequence_length × hidden_dim
• This unified vision-language representation is what gets passed to the DiT for action generation.
• Middle-Layer Representations: Instead of using the final output layer of the LLM, GR00T uses the 12th layer output. Middle-layer features 

tend to be richer and more general (less overfit to LLM-specific objectives). They are also faster to extract and empirically showed better 
downstream policy performance.
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Ø Diffusion Transformer Module:
• GR00T learns to generate robot actions using a Diffusion Transformer (DiT), where actions are gradually “denoised” from random noise. It 

takes as input: 1) noisy action tokens 𝐴𝜏ₜ (sampled partway through the diffusion process), 2) the robot’s proprioceptive state embeddings, 
3) Vision-language tokens, and learns to predict the direction of denoising — i.e., how to update the noisy action toward the correct one.

• Action Denoising via Flow Matching: GR00T uses Flow Matching instead of reverse-time sampling like denoising diffusion probabilistic 
models (DDPMs). 

• Given: 1) ground-truth action chunk 𝐴E , 2) diffusion timestep 𝜏 ∈ [0, 1], 3) sampled noise 𝜖 ∼ 𝒩(0, I), It constructs the  noised action:  
𝐴EÈ = 	𝜏	𝐴E 	+ 1	 − 	𝜏 𝜖

• The model predicts how to “move” the noisy action toward the target using: 𝑉$(𝜙ₜ, 𝐴EÈ, 𝑞ₜ) 	≈ 	𝜖	 − 𝐴E
• This forms the loss function: 𝐿G� 𝜃 = 𝐸È 𝑉$ 𝜙ₜ, 𝐴EÈ, 𝑞ₜ − 𝜖	 − 𝐴E i

• Inference (Action Generation):  During inference, GR00T generates actions using K-step forward Euler integration: 1) Start with random 

noise 𝐴ED∼ 𝒩(0, I), 2) Iterate 𝐾 times (e.g., 𝐾 = 4) to denoise:𝐴E
È'&�= 𝐴EÈ	+ (#

¨
)𝑉$(𝜙ₜ, 𝐴EÈ, 𝑞ₜ)	

Ø MLP-based Action Decoder:
After DiT finishes denoising, the output token sequence is passed through an embodiment-specific MLP (Action Decoder) to produce the 
final robot actions (e.g., joint positions, velocities, etc.).

GR00T N1 Model Architecture
Ashkan Jasour
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Topics:

Ø Generative AI - Architectures
• Multilayer Perceptrons (MLPs)
• Training and Loss Functions Types
• Backpropagation Algorithm
• Stochastic Gradient Descent (SGD) and Adam Optimizer
• Common Training Issues, Regularization in Deep Learning, and Scaling Laws for Deep Learning
• Convolutional Neural Networks (CNNs)
• PixelCNN
• U-Net Denoising Model
• Recurrent Neural Networks (RNNs) 
• LSTM (Long Short-Term Memory) 
• GRU (Gated Recurrent Unit)
• Transformers: Self-Attention, Multi-Head Attention, and Cross-Attention
• Diffusion Transformers (DiTs)
• Vision Transformers (ViTs)
• Attention-Based U-Nets
• Multimodal Models
• Foundation Models
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Ø Generative AI - Algorithms
• Flow Models
• Ordinary Differential Equation (ODE)-based Flow Models
• Denoising Diffusion Models (DDMs)
• Stochastic Differential Equation(SDE)-based Denoising Diffusion Models
• Autoencoders and Variational Autoencoders (VAEs) 
• Latent Space Diffusion Models
• Autoregressive Models
• Generative Adversarial Networks (GANs)

Topics:

Ø Generative AI - Architectures
• Multilayer Perceptrons (MLPs)
• Training and Loss Functions Types
• Backpropagation Algorithm, Stochastic Gradient Descent (SGD), and Adam Optimizer
• Common Training Issues, Regularization in Deep Learning, and Scaling Laws for Deep Learning
• Convolutional Neural Networks (CNNs) and PixelCNN
• U-Net Denoising Model
• Recurrent Neural Networks (RNNs), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit)
• Transformers: Self-Attention, Multi-Head Attention, and Cross-Attention
• Diffusion Transformers (DiTs), Vision Transformers (ViTs), and Attention-Based U-Nets
• Multimodal Models
• Foundation Models
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Appendices:
• Key Differential Equations in Generative AI
• Fine-tuning Large Language Models 
• Deep Reinforcement Learning - Key Concepts and Summary

 – PG, VPG, PPO, DDPG, TD3, SAC
• Reinforcement Learning from Human Feedback (RLHF) and Imitation Learning
• Adversarial Training, Robustness in Language Models, and Language Models Evaluation
• Python Libraries for Generative AI 
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• Flow Model:   ODE:-3$
-0
= 𝑢0! 𝑥0 ,	 Initial state:	𝑥(~𝑝&)&0	,	𝑥#~𝑝-101

𝑥0~𝑝0 ,
𝑑𝑝0(𝑥)
𝑑𝑡 = −𝑑𝑖𝑣(	𝑝0 𝑥 𝑢0 𝑥 	)• Continuity Equation:

PDE that governs the time evolution of probability distribution through the ODE, where div is divergence operator 𝑑𝑖𝑣(𝑓) = ∑-
c
c*2

𝑓(𝑥)

• Diffusion Model:  SDE:	𝑑𝑥0 = 𝑢0! 𝑥0 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	Initial state:	𝑥(~𝑝&)&0

𝑥0~𝑝0 ,
𝜕𝑝0(𝑥)
𝜕𝑡 = −𝑑𝑖𝑣 	𝑝0 𝑥 𝑢0 𝑥 	 +

𝜎0*

2 Δ𝑝0(𝑥)• Fokker-Planck Equation (Forward Kolmogorov Eq):

PDE that governs the time-evolution of probability distribution through the SDE, where Δ is Laplacian operator	Δ𝑓 = ∑-
c'

c'*2
𝑓(𝑥)

• Langevin dynamics: special case of denoising diffusion model where 𝑢0! 𝑥0 = 0

• Denoising Diffusion Model:  𝑑𝑥0 = 𝑢0! 𝑥0 + F$"

*
∇3 log 𝑝0(𝑥) 𝑑𝑡 + 𝜎0𝑑𝑊0 ,	Initial state:	𝑥(~𝑝&)&0	,	𝑥#~𝑝-101

𝑑𝑥0 =
𝜎0*

2 ∇3 log 𝑝(𝑥) 𝑑𝑡 + 𝜎0𝑑𝑊0

𝑝(𝑥) is a stationary distribution of Langevin dynamics, 𝑥(~𝑝 𝑥 , 𝑥N~𝑝 𝑥 	𝑡 ≥ 0	 (The probability distribution remains 
stationary over time 𝑝0(𝑥)= 𝑝(𝑥) )

If 𝑥(~o𝑝( 𝑥 ≠ 𝑝 𝑥 , 𝑥N~o𝑝0 𝑥 → 𝑝(𝑥)

Ø Key Differential Equations

160

: Distribution of 𝑥7 converges to 𝑝(𝑥) 

Ø Key Differential Equations in Generative AI Ashkan Jasour
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Fine-tuning Large Language Models
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1. Supervised Fine-Tuning (SFT) 
Supervised fine-tuning is the most straightforward approach. It involves training a pre-trained language model on a 
curated dataset with input-output pairs (e.g., question-answer, instruction-response). The model learns to generate 
desired outputs for given prompts by minimizing a supervised loss (typically cross-entropy loss). 
Use case: Aligning the model with domain-specific tasks or instruction-following abilities.

2. Knowledge Distillation:
In this technique, a smaller or more efficient model (the student) is trained to mimic the behavior of a larger, more capable 
model (the teacher). The student learns not just from ground truth labels but also from the teacher’s output (soft targets), 
which provide richer training signals. 
Use case: Creating smaller, faster models by compressing LLMs, while maintaining comparable performance.

3. Policy Optimization (Reinforcement Learning):
After initial SFT, models can be further fine-tuned using Reinforcement Learning (RL) to optimize behavior according to 
human preferences or safety constraints. A popular example is RLHF (Reinforcement Learning from Human Feedback), where: 
i) A reward model is trained using human-labeled preferences, ii) The LLM is further fine-tuned using policy optimization 
algorithms (e.g., PPO) to maximize the reward. 
Use case: Making model outputs more aligned, helpful, safe, or preference-consistent.

Ashkan Jasour
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2. Knowledge Distillation:
Knowledge distillation is a model compression technique where: 
 • A large, high-performing model (called the teacher) is used to generate soft labels (i.e., predicted probabilities or outputs). 
 • A smaller model (called the student) is trained to mimic the teacher’s behavior using these soft labels. 

How It Works:
1. Input Data Feeding: 

• A dataset (e.g., prompts or sentences) is passed into the teacher model.
2. Teacher Prediction:

• The teacher model outputs logits or probability distributions over possible outputs.
• These are often “softer” than hard labels — showing which tokens the teacher thinks are likely, not just the most likely.
• Soft labels contain more information than hard labels, e.g., instead of just saying “the answer is ‘cat’,” the teacher might say: cat: 70%, 

dog: 20%, mouse: 10%
3. Student Learning:
• The student model takes the same input and tries to generate similar outputs.
• The student is trained using a loss function to minimize the difference between its outputs and those of the teacher.
• Instead of (or in addition to) cross-entropy with ground-truth labels, it uses Kullback-Leibler divergence to learn the teacher’s full 

distributions, i.e., 𝐿 = 	𝐾𝐿 − 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑃EÉvÊ Ét ∥ 𝑃ËEÌsÉ0E

Input → Teacher Model → Soft Output → Student Model (Trained to Match Teacher)

Ashkan Jasour
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Deep Reinforcement Learning (DRL)
Key Concepts and Summary
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Ø Deep Reinforcement Algorithms
Ø Reinforcement Learning from Human Feedback (RLHF)
Ø Imitation Learning
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Deep Reinforcement Algorithms

• Achiam, J., & OpenAI. Spinning Up in Deep Reinforcement Learning. https://spinningup.openai.com/en/latest/ 
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(Deep) Reinforcement Learning is a framework where an agent learns to make decisions by interacting with an environment.

1) At each time step, the agent observes the state of the environment, 2) A neural policy (deep neural network) maps the state 
to an action (Deep Reinforcement Learning), 3) The environment responds with a reward and a new state, 4) The agent’s 
objective is to maximize cumulative reward over time.



Ø RL: a type of machine learning where an agent learns to make decisions by interacting with an environment.
• The agent takes an action in a given state.
• The environment responds with a new state and a reward.
• The agent’s goal is to maximize cumulative reward over time.

Agent The learner or decision maker.

Environment Everything the agent interacts with.

State (𝑠.) The current situation of the agent.

Action (𝑎.) The move the agent makes.

Trajectory (𝜏)
(episodes or rollouts)

Sequence of states and actions 𝜏 = (𝑠3, 𝑎3, 𝑠&, 𝑎&, . . ), 𝑠3~𝑝3(. ) is randomly sampled from the initial state distribution
State transition: Deterministic 𝑠.X& = 𝑓(𝑠., 𝑎.) or Stochastic: 𝑠.X&~𝑃(. |𝑠., 𝑎.)
Probability of a trajectory: 𝜏~𝜋, 	𝑃 𝜏 𝜋 = 𝑝3 𝑠3 ∏.53

I+&𝑃 𝑠.X& 𝑠., 𝑎. 𝜋(𝑎.|𝑠.) 

Reward (𝑟.) Feedback from the environment after an action e.g., 𝑟. = 𝑅(𝑠., 𝑎., 𝑠.X&)

Policy (𝜋)
Strategy that the agent uses to choose actions. Mapping from state 𝑠. to action 𝑎.. 
Deterministic policy 𝑎. = 𝜇(𝑠.) , Stochastic policy 𝑎.~𝜋(. |𝑠.) : sampled from a probability distribution over actions, given the state 𝑠., e. g. , 𝜋 . 𝑠. =
𝑁(𝜇! 𝑠. , Σ!(𝑠.)) , e.g., Softmax over discrete action logits

Value Function (𝑉a(𝑠))

Estimates how good a state (or state-action pair) is in terms of expected future rewards, e.g.,“If I’m in state 𝑠., how much total reward can I expect to 
collect in the future if I keep acting well (according to the optimal policy)?”
There’s also a Q-value function 𝑄a(𝑠, 𝑎), which estimates the expected return of taking action 𝑎 in state 𝑠 and then following policy 𝜋
Bellman Equation: The value of your current state is equal to the reward you get now, plus the value of wherever you end up next (It’s a recursive way of 
bootstrapping value estimates)

𝑉a 𝑠. = E-"~a,<"1$~c 𝑟. + 𝛾𝑉
a 𝑠.X& ,     Optimal value function: 𝑉∗ 𝑠. = max

-
E<"1$~c 𝑟. + 𝛾𝑉

∗ 𝑠.X&
𝑄a 𝑠., 𝑎. = E-"1$~a,<"1$~c[𝑟. + 𝛾𝑄

a(𝑠.X&, 𝑎.X&)], Optimal Q function:	𝑄∗ 𝑠., 𝑎. = E<"1$~c[𝑟. + 𝛾max-"1$
𝑄∗(𝑠.X&, 𝑎.X&)]

Ø RL Optimization: Find a policy 𝜋∗	 to maximize the total discounted reward

𝜋∗ 	= argmax
�

	E o
)I1

�

𝛾) 	𝑟) 	 = ³
�
𝑃 𝜏 𝜋 𝑅(𝜏)

• 𝛾: Discount factor (how much future rewards are worth) 𝑅(𝜏): cumulative reward over the trajectory 𝜏 
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Ø RL Algorithms

Model-Free

Policy Optimization
• Directly learns a parameterized policy 𝜋!(𝑎|𝑠)
• Optimizes the expected return by adjusting 𝜃	using gradient ascent:

𝜃(X& = 𝜃( + 𝛼∇!E z
.

𝛾.𝑟.

• on-policy: each update only uses data collected while acting 
according to the most recent version of the policy.

• Works for discrete and continuous actions
• Higher Variance(gradient estimates fluctuate significantly)
• Often includes learning a value function 𝑉e(𝑠) to reduce the variance 

of policy gradient estimates.

Policy Gradient
Synchronous Advantage Actor-Critic (A2C)
Asynchronous Advantage Actor-Critic (A3C)
Proximal Policy Optimization (PPO)
Trust Region Policy Optimization (TRPO)

Q-Learning
• Learns Q-function 𝑄!(𝑠, 𝑎)
• Typically, they use an objective function based on the Bellman equation.
• The policy is implicit: 𝜋 𝑠 = argmax

-
𝑄(𝑠, 𝑎) 

• off-policy: each update can use data collected at any point during training, regardless 
of how the agent was choosing to explore the environment when the data was 
obtained.

• The behavior policy is often deterministic, unless exploration is introduced via stochasticity 
(e.g., ε-greedy).

• Best for discrete actions
• Lower Variance(More consistent)

Model-Based

Deep Deterministic Policy Gradient (DDPG)
Twin Delayed DDPG(TD3)
Soft Actor-Critic (SAC)

Deep Q-Networks(DQN)
Categorical 51-Atom DQN(C51)
Quantile Regression DQN(QR-DQN)
HER(Hindsight Experience Replay)

Examples:
Model-Predictive  Control (MPC)
Monte Carlo Tree Search
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Policy Optimization

𝜃U+$ = 𝜃U + 𝛼∇*𝐽(𝜋*)• We need to describe the gradient of the policy performance (∇*𝐽(𝜋*)	: policy gradient) with respect to policy parameters:

Collect a set of trajectories 𝐷	 = 	 {𝜏4} 45&,…,g 	where each trajectory is obtained by letting the 
agent act in the environment using the policy 𝜋!, the policy gradient can be estimated with

where |D| is the number of trajectories.

For each trajectory, i) loop over t = 0 to T, ii) at each time 
step, compute the gradient ∇2𝑙𝑜𝑔𝜋2(𝑎3 ∣ 𝑠3), and iii) 
multiply each of those by the same scalar 𝑅(𝜏).

• Reward-to-go based Policy Gradient: Actions are only reinforced based on rewards obtained after they are taken.

(Reward-to-go):

• Baseline based Policy Gradient: For any function b which only depends on state: 
This allows us to add or subtract any number of terms to policy gradient, without changing its expectation

common choice of baseline: 𝒃 𝒔𝒕 = 𝑽𝝓𝝅(𝒔𝒕) (=Expected reward-to-go from state 𝒔𝒕) to reduce the variance/ faster and more stable policy learning.

𝜋"(𝑎|𝑠) Scalar probability ∈ [0,1]

log 𝜋"(𝑎|𝑠) Scalar ∈ ℝ

∇	𝜋"(𝑎|𝑠) Vector Same size as parameters 𝜃

• Discrete action space: The log likelihood for an action a can then 
be obtained by indexing into the vector

• Log-Likelihood. The log-likelihood of a k -dimensional action a, for a diagonal Gaussian with 
mean 𝜇	 = 	𝜇	!	(𝑠)	and standard deviation 𝜎	 = 	𝜎	!	(𝑠)	is given by
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Policy Optimization: Vanilla Policy Gradient (VPG)

• Advantage function: 𝐴a 𝑠., 𝑎. = 𝑄a 𝑠., 𝑎. − 𝑉a 𝑠.

• Estimated Advantage function : Þ𝐴. = ß𝑅. − 𝑉e& 𝑠.
Hence, Vanilla Policy Gradient : baseline-based policy gradient method — 
where the baseline is typically the learned state-value function 𝑉e& 𝑠. 	

• Value function estimation

Policy Gradient Methods for Reinforcement Learning with Function Approximation, Sutton et al. 2000

Optimizing Expectations: From Deep Reinforcement Learning to Stochastic Computation Graphs, Schulman 2016(a)

Benchmarking Deep Reinforcement Learning for Continuous Control, Duan et al. 2016

High Dimensional Continuous Control Using Generalized Advantage Estimation, Schulman et al. 2016(b)
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Policy Optimization: Trust Region Policy Optimization(TRPO)

:surrogate advantage, a measure of how policy 𝜋!	performs relative to 
the old policy 𝜋!& 	using data from the old policy

: average KL-divergence between policies across states visited by 
the old policy:

• Goal: how can we take the biggest possible improvement step on a policy using the data we currently have, without stepping so far that we accidentally cause performance collapse
• TRPO updates policies by taking the largest step possible to improve performance, while satisfying a constraint on how close the new and old policies are allowed to be (expressed in terms 

of KL-Divergence). 
• This is different from normal policy gradient, which keeps new and old policies close in parameter space. But even seemingly small differences in parameter space can have very large 

differences in performance—so a single bad step can collapse the policy performance. This makes it dangerous to use large step sizes with vanilla policy gradients, thus hurting its sample 
efficiency. TRPO nicely avoids this kind of collapse and tends to quickly and monotonically improve performance.

Apply a Taylor expansion to the objective:

Due to the approximation errors introduced by the Taylor expansion, this may not satisfy the KL 
constraint or actually improve the surrogate advantage. TRPO adds a modification to this update 
rule: a backtracking line search

where 𝛼 ∈(0,1) is the backtracking coefficient, and	𝑗	is the smallest nonnegative integer such that 
𝜋!&satisfies the KL constraint and produces a positive surrogate advantage.
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Policy Optimization: Proximal Policy Optimization(PPO)
• Goal: same as TRPO
• PPO is a family of first-order methods (instead of TRPO’s second-order method); Hence, PPO methods are significantly simpler to implement.

PPO-Penalty approximately solves a KL-constrained update like TRPO, but penalizes the KL-divergence in the objective function instead of making it a hard constraint, and 
automatically adjusts the penalty coefficient over the course of training so that it’s scaled appropriately.

PPO-Clip doesn’t have a KL-divergence term in the objective and doesn’t have a constraint at all. Instead, it relies on specialized clipping in the objective function to remove 
incentives for the new policy to get far from the old policy.

PPO-clip updates policies via

where

• If the ratio                deviates beyond 1 ± 	𝜖, it stops the update from going 
further.
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Policy Optimization & Q-Learning : Deep Deterministic Policy Gradient (DDPG)
• Concurrently learns a Q-function and a policy. It uses off-policy data and the Bellman equation 

to learn the Q-function, and uses the Q-function to learn the policy.
• DDPG is an off-policy algorithm.
• For continuous control tasks. DDPG can be viewed as an extension of Q-learning for continuous 

action spaces.

Ø Q-Learning:
• Bellman equation for optimal Q-function: 𝑄∗ 𝑠., 𝑎. = E<"1$~c[𝑟. + 𝛾max-"1$

𝑄∗(𝑠.X&, 𝑎.X&)]

• Mean-Squared Bellman Error (MSBE): 
Collected a set D of transitions (𝑠., 𝑎., 𝑟., 𝑠.X&, 𝑑) (where 𝑑 ∈ {0,1} indicates whether state 𝑠.X& is 
terminal)

 L = E <",-",9",<"1$,, ~h 𝑄e 𝑠., 𝑎. − (𝑟. + 𝛾(1 − 𝑑)max-"1$
𝑄e(𝑠.X&, 𝑎.X&))

'

d=1 for terminal state, we ignore the next Q-value — because there is no next state to plan for.
Target Network

• Target Network depends on the same parameters we are trying to train: 𝜙. This makes MSBE 
minimization unstable. Instead, we use target networks 𝑄e"456(𝑠.X&, 𝜇!"456(𝑠.X&))

 L = E <",-",9",<"1$,, ~h 𝑄e 𝑠., 𝑎. − (𝑟. + 𝛾(1 − 𝑑)𝑄e"456(𝑠.X&, 𝜇!"456(𝑠.X&)))
'

• Given optimal Q function: 𝑎∗ 𝑠. = argmax
-
	𝑄∗ 𝑠., 𝑎.

• Hence: max
!
𝐸<~h[𝑄e(𝑠, 𝜇!(𝑠))]

Ø Components: i) Actor Network: 𝜇!(𝑠) deterministic policy, ii) Critic Network: 𝑄e 𝑠, 𝑎  estimates the 
value of taking action 𝑎 in state 𝑠,	iii) Target Networks: 𝜇!"456(𝑠) and 𝑄e"456 𝑠, 𝑎 	: smoothed copies of 
the actor and critic for stable training

Ø Goal: The critic learns how good actions are (Q-leaning). The actor is trained to select actions that 
maximize the Q-values estimated by the critic (via deterministic policy gradients).

Ø Deterministic policy gradients:

Ø Targett Network Updates: The target network parameters in DDPG can be viewed as a time-delayed 
(or exponentially smoothed) version of the original network parameters. 

• Slowly update target networks
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Policy Optimization & Q-Learning: Twin Delayed DDPG (TD3)
• Improves the DDPG by:

• Clipped Double-Q Learning: TD3 learns two Q-functions (𝑄e$ 	and 𝑄e#)instead of one (hence “twin”), and 
uses the smaller of the two Q-values to form the targets in the Bellman error loss functions.

L& = E <",-",9",<"1$,, ~h 𝑄e$ 𝑠., 𝑎. − (𝑟. + 𝛾(1 − 𝑑)𝑚𝑖𝑛45&,'𝑄e"4567(𝑠.X&, 𝑎(𝑠.X&)))
'

L' = E <",-",9",<"1$,, ~h 𝑄e# 𝑠., 𝑎. − (𝑟. + 𝛾(1 − 𝑑)𝑚𝑖𝑛45&,'𝑄e"4567(𝑠.X&, 𝑎(𝑠.X&)))
'

• Delayed Policy Updates. TD3 updates the policy (and target networks) less frequently than the 
Q-function, e.g., one policy update for every two Q-function updates.
The policy is learned just by maximizing 𝑄e$ ∶ 	max! 𝐸<~h[𝑄e$(𝑠, 𝜇!(𝑠))] 

• Target Policy Smoothing. TD3 adds noise to the target action, to prevent the policy from overfitting 
to Q-function estimation errors by smoothing out Q along changes in action.

−𝑐 ≤ 𝜖 ≤ 𝑐
𝑎89: ≤ 𝜇2#$%& + 𝜖 ≤ 𝑎;<=>
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Policy Optimization & Q-Learning: Soft Actor-Critic (SAC)
• SAC is an off-policy algorithm. 
• Uses a stochastic policy 
• Adds an entropy bonus to the objective 
• Like in TD3, SAC uses two Q-functions and a target network, but differs by using a stochastic policy and entropy regularization 

to encourage exploration.

Ø Entropy-regularized reinforcement learning: the agent gets a bonus reward at each time step proportional to 
the entropy of the policy at that timestep

𝛼 > 0

Q-function:

Value function:

Bellman 
Equation:

Ø Q-Learning: The Q-functions (𝑄e$ , 𝑄e#) are learned in a similar way to TD3
• Like in TD3, both Q-functions are learned with MSBE minimization, by regressing to a single shared target.
• Like in TD3, the shared target is computed using target Q-networks, and the target Q-networks are obtained 

by polyak averaging the Q-network parameters over the course of training.
• Like in TD3, the shared target makes use of the clipped double-Q trick.
• Unlike in TD3, the target also includes a term that comes from SAC’s use of entropy regularization.
• Unlike in TD3, the next-state actions used in the target come from the current policy instead of a target policy.
• Unlike in TD3, there is no explicit target policy smoothing. TD3 trains a deterministic policy, and so it 

accomplishes smoothing by adding random noise to the next-state actions. SAC trains a stochastic policy, and 
so the noise from that stochasticity is sufficient to get a similar effect.

Ø Policy Learning: The policy should, in each state, act to maximize the expected future return plus expected future 
entropy. That is, it should maximize 

• Gaussian policy:

Unlike in TD3, which uses 𝑄?'  (just the first Q approximator), SAC uses min(𝑄?' , 𝑄?(). The policy is thus optimized 
according to
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Method Main Idea Policy Update Equation Drawbacks Improvement in Successor(s)

REINFORCE 
(Basic PG)

Learn directly from sampled returns 
by computing Monte Carlo estimates 
of the policy gradient.

𝜃@A- = 𝜃@ + 𝛼	 ¢𝑔

¢𝑔 =
1
|𝐷|

¦
B∈D

¦
3EF

G

∇2 log 𝜋2 𝑎3 𝑠3 𝑅(𝜏)

• High variance in gradient estimates
• No baseline → credits all actions 
equally
• Poor sample efficiency
• On-policy only (can’t reuse past data)
• Full trajectory return 𝑅(𝜏) used at 
every step, causing delayed credit 
assignment

• Add a baseline (e.g. value function 𝑉(𝑠) ) to reduce variance → 
Vanilla PG (with baseline)
• Use reward-to-go 𝑅3   instead of full return 𝑅(𝜏) to better assign 
credit → Reward-to-go PG
• Add KL constraint or clipping to stabilize updates → TRPO, PPO
• Use bootstrapped critics and off-policy sampling for efficiency 
→ Actor-Critic methods (DDPG, TD3, SAC)

VPG (with 
baseline)

Use reward-to-go 𝑅3  and a value 
function baseline 𝑉?(𝑠3)  to reduce 
variance without biasing the gradient.

Same as above, but replace 𝑅(𝜏) with advantage estimate:  
𝐴3  = 𝑅3  - 𝑉?(𝑠3) 

Still on-policy; small updates can lead to 
slow learning.

TRPO introduces constrained optimization for larger but safe 
updates.

TRPO
Maximize a surrogate objective while 
constraining KL divergence from the 
old policy.

Complex implementation (2nd-order 
method); expensive due to Hessian. PPO simplifies with first-order clipping instead of KL constraint.

PPO (Clip)
Simplifies TRPO by using a clipped 
surrogate objective (to restrict 
updates), avoiding KL constraints.

Still on-policy; less sample-efficient; 
sensitive to clip range.

Move to off-policy methods for better sample reuse → 
DDPG/TD3/SAC.

DDPG Actor-critic method for continuous 
actions using deterministic policies.

Critic: Mean-Squared Bellman Error (MSBE) loss with respect to 
the target network described in terms of target Q function and 
targe policy
Actor: Q-function maximization

Overestimation bias in Q-learning; 
unstable training.

TD3 fixes with clipped double Q-learning and delayed policy 
update.

TD3
Improves DDPG with: 1) 2 critics, 2) 
target smoothing, 3) delayed 
updates.

Same as DDPG, but uses minimum of 2 target Q-functions in MSBE Still deterministic policy; no explicit 
exploration via policy. SAC uses stochastic policy and adds entropy regularization.

SAC Stochastic actor-critic with entropy 
bonus for exploration + stability.

Critic: like TD3 but with entropy  
Actor: maximizes value function with entropy

Requires tuning or learning the entropy 
coefficient 𝛼; slightly higher 
computational cost due to two Q-
networks and sampling from stochastic 
policy
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Concept Used In Purpose

Value Function Baseline V(s) VPG, TRPO, PPO Reduce gradient variance

Advantage Estimation A = R - V All PG methods Credit assignment

KL Constraint TRPO Prevent destructive updates

Clipping PPO Ensure stable updates

Entropy Bonus 𝛼	𝑙𝑜𝑔	𝜋 SAC Encourage exploration

Target Networks DDPG, TD3, SAC Stabilize critic training
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1) mlp(sizes, activation=nn.Tanh, output_activation=nn.Identity)

3) for i in range(epochs):
 batch_loss, batch_rets, batch_lens = train_one_epoch()
 torch.save(logits_net.state_dict(), 'trained_policy.pt')

train loop

2) train(env_name='CartPole-v0', hidden_sizes=[32], lr=1e-2, epochs=50, batch_size=5000, render=False)
• logits_net = mlp(sizes=[obs_dim]+hidden_sizes+[n_acts])
• get_policy(obs)
• get_action(obs)
• compute_loss(obs, act, weights)
• train_one_epoch()

• batch_loss = compute_loss(obs=torch.as_tensor(np.array(batch_obs), dtype=torch.float32), 
  act=torch.as_tensor(batch_acts, dtype=torch.int32),

  weights=torch.as_tensor(batch_weights, dtype=torch.float32))
• batch_loss.backward()
• optimizer.step()

action sampled from policy
action distribution (policy)

policy network

Gymnasium environment

ØExample: 

def compute_loss(obs, act, weights):
        logp = get_policy(obs).log_prob(act)
        return -(logp * weights).mean()

𝑅(𝜏)𝑠. 𝑎.

log 𝜋!(𝑎.|𝑠.)

Loss:

Architecture:

Policy MLP  Network:

pi_net = nn.Sequential( 
 nn.Linear(obs_dim, 64), 
 nn.Tanh(), 
 nn.Linear(64, 64), 
 nn.Tanh(), 
 nn.Linear(64, act_dim) 
 )
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Reinforcement Learning from Human Feedback (RLHF)
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• Reinforcement Learning (RL) for fine-tuning AI models

Example: At each step:
• The model observes a context (previous tokens)
• Then chooses the next token from a fixed vocabulary set: 𝑎E ∈ 𝑡𝑜𝑘𝑒𝑛#, 𝑡𝑜𝑘𝑒𝑛i, … , 𝑡𝑜𝑘𝑒𝑛å
• The policy 𝜋$(𝑎|𝑠)	is a categorical distribution over discrete actions.

• Treat the pretrained model as a policy 𝜋$(𝑎|𝑠) where:
 𝑠	: input context (e.g., prompt, observation), 𝑎	: model output (e.g., text, image, action), 𝜃	: model parameters
Then, apply policy gradient optimization to improve the model based on interaction or evaluation-based feedback.

Ø Reinforcement Learning from Human Feedback (RLHF)
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• Treat the pretrained model as a policy 𝜋$(𝑎|𝑠) where:
 𝑠	: input context (prompt, observation), 𝑎	: model output (e.g., text, image, action), 𝜃	: model parameters
Then apply policy gradient optimization to improve the model via interaction or evaluation-based feedback.

Ø Reinforcement Learning (RL) for fine-tuning AI models

1. Trajectory Collection
Instead of an environment simulator, we generate responses (i.e., trajectories) from the model: 𝐷 = 𝑠-, 𝑎-, 𝑅-
 𝑠-	: user prompt or input, 𝑎-~𝜋$ . 𝑠- :	model-generated output, 𝑅-	: scalar reward (from a human, a reward model, or a metric)

2. Policy Gradient Estimation

Since most AI fine-tuning tasks don’t have multi-step episodes, reduce to one-step trajectory: ∇!J 𝜋! = Ex,1 ∇! log 𝜋! 𝑎 𝑠 𝑅(𝑠, 𝑎)

3. Add Reward-to-Go or Advantage

• If we have multi-step outputs (e.g., token-by-token generation), we can compute reward-to-go instead of reward:

• We can use advantage estimation with a baseline 𝑏 𝑠 :
∇$J 𝜋$ = EË,v ∇$ log 𝜋$ 𝑎 𝑠 (𝑅 𝑠, 𝑎 − 𝑏 𝑠 )

 In RLHF, 𝑏 𝑠  is typically learned from value function 𝑉p 𝑠 ≈ Ev 𝑅(𝑠, 𝑎)

4.  Apply PPO or Clipping 
To ensure stable fine-tuning, we typically apply Proximal Policy Optimization (PPO).
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Imitation Learning (IL)
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Ø Imitation Learning (IL)
• Agent learns to perform tasks by observing and mimicking expert behavior, rather than learning purely from trial and error like in 

traditional reinforcement learning (RL).
• Instead of learning from rewards, the agent is trained using demonstrations from a human or expert policy.

Common Imitation Learning Methods:
1.Behavior Cloning (BC):
 Supervised learning from state-action pairs (like training a classifier).
 The agent learns a policy π(s) ≈ a from demonstration data (s, a).
 Simple but suffers from compounding errors due to distribution shift.

2. Inverse Reinforcement Learning (IRL) :
 Learns the reward function that the expert is assumed to optimize.
 Then uses RL to derive the policy under this reward.

3. DAGGER (Dataset Aggregation) :
 An interactive approach: the agent tries to imitate, gets corrected by the expert, and the dataset is updated.
 Reduces compounding errors better than Behavior Cloning.

Feature Imitation Learning Reinforcement Learning

Learning Signal Expert demonstrations (no reward 
needed) Reward feedback from environment

Exploration No exploration (just mimic expert) Actively explores actions

Sample Efficiency High (if expert data is good) Often low (needs many trials)

Generalization May overfit to expert data Can generalize well if trained properly
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1.  Behavior Cloning (BC)
A supervised learning approach where the agent learns to imitate an expert’s behavior by mapping observations to actions.

• Collect a dataset of expert trajectories: : 𝐷 = 𝑠#, 𝑎# , … , 𝑠,, 𝑎,
• Train a policy 𝜋$(𝑎|𝑠) to minimize prediction error:  min

$
∑-.#, 𝜋$ 𝑠- − 𝑎- i

 Essentially: “Watch and copy the expert.”

Pros: 1) Simple and fast to implement. 2) Works well when expert demonstrations cover the state space well.
Cons: 1)Fails if the agent visits unseen states not in the demo, 2) Compounding errors: small mistakes lead to drifting into unknown territory.

2. DAGGER (Dataset Aggregation)
• An iterative imitation learning algorithm that fixes the distribution shift problem in behavior cloning by aggregating more data from the 

agent’s own policy.
• Let the agent explore, but always ask the expert what they would do, and use that to update the model.

1) Initialize policy with Behavior Cloning, 2) Roll out the current policy in the environment, 3) For each visited state, query the expert for the 
correct action, 4) Add these new (state, expert action) pairs to the training set, 5) Retrain the policy (like in BC)on the updated dataset, 6) 
Repeat.

Pros: 1) Reduces compounding error and distribution mismatch, 2) Handles unseen states by learning from them directly.
Cons: 1) Requires online access to the expert (e.g., human or simulator), 2) More expensive to run than pure behavior cloning.

• Behavior Cloning: One-time supervised imitation based on fixed expert demonstrations.
• DAGGER: Iterative imitation with expert corrections during agent exploration.
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Imitation Learning (IL) Reinforcement Learning from Human Feedback (RLHF)

Supervision Type Supervised learning (behavior cloning) Reinforcement learning (reward-based)

Human Data Type Human demonstrations (actions or outputs) Human preferences or rankings over model outputs

Learning Signal Imitate human actions/output exactly Learn to optimize behavior by maximizing rewards from a 
reward model

Goal Mimic expert behavior Align with human preferences / values

Training Objective Minimize prediction error on human-provided actions Maximize expected reward via policy gradient (e.g., PPO)

Exploration No exploration (passive learning) Includes exploration (active learning via policy updates)

Example Use Self-driving vehicles, robot control demonstrations ChatGPT, InstructGPT, LLM alignment

Algorithm Examples Behavior Cloning, DAGGER RLHF pipeline (Reward model + PPO)

Ø Reinforcement Learning from Human Feedback (RLHF) VS Imitation Learning (IL)
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Ø Adversarial Training

These topics explore how to train models to resist adversarial inputs — subtle changes in the input meant to fool the model.

• Key Topics:
1. Adversarial Examples in NLP (e.g., word substitutions, paraphrasing attacks)
2. Adversarial Training for Text: Fine-tuning models using perturbed inputs
3. Contrastive Learning under Adversarial Perturbations
4. Certified Robustness in Text Models: Provable guarantees against perturbations
5. Gradient-based vs. Black-box Attacks: FGSM, PGD, HotFlip, TextFooler, BERT-Attack
6. Robust Optimization Frameworks: Min-max formulations
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1. Adversarial Examples in NLP
• Goal: Create small, often imperceptible changes to inputs (like synonyms or typos) that cause the model to fail.
• Examples: i) Word Substitutions: Replace words with similar ones (e.g., “happy” → “glad”), ii) Paraphrasing Attacks: Reword the sentence while preserving 
its original meaning
• Tools: TextFooler, BERT-Attack

2. Adversarial Training for Text
• Goal: Improve model robustness by training it on both clean and adversarially perturbed inputs.
• Method: Generate adversarial examples during training and fine-tune the model on them.
• Effect: Helps the model learn to resist attacks and generalize better.

3. Contrastive Learning under Adversarial Perturbations
• Goal: Teach the model to keep similar inputs close in representation space even under perturbation.
• Method: Use contrastive loss to align clean and adversarial versions of the same sentence.
• Example: Extend SimCSE or BERT embeddings with adversarial contrastive learning.

4. Certified Robustness in Text Models
• Goal: Provide formal guarantees that the model is robust to certain changes (e.g., up to k word substitutions).
• Method: Use interval bound propagation, randomized smoothing, or convex relaxations to certify robustness.
• Tradeoff: Provides high reliability but often incurs significant computational cost and limited scalability.

5. Gradient-based vs. Black-box Attacks
• Gradient-based (White-box): Use the model’s gradients to craft attacks.

• Examples: FGSM (Fast Gradient Sign Method), PGD (Projected Gradient Descent), HotFlip
•Black-box: Don’t access the model’s internals; use outputs to guide attacks.

• Examples: TextFooler, BERT-Attack

6. Robust Optimization Frameworks
• Goal: Formulate training as a min-max optimization problem:
• The model learns parameters 𝜃 that minimize worst-case loss under allowable perturbations 𝛿.
• Used in: Adversarial training with PGD, DRO (Distributionally Robust Optimization), etc.
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Ø Robustness in Language Models:
Robustness here refers to the model’s reliability under distribution shifts, noise, and unexpected or adversarial inputs.

• Key Topics:
1. Out-of-Distribution (OOD) Generalization: How well LLMs perform on unseen data
2. Input Noise Robustness: Typos, code-switching, slang
3. Semantic Robustness: Understanding paraphrased or logically equivalent sentences
4. Robustness to Prompt Variations: Sensitivity to prompt phrasing (prompt engineering)
5. Robustness to Distribution Shift: E.g., test-time domain adaptation
6. Multi-lingual & Cross-lingual Robustness
7. Robustness in Instruction Tuning and RLHF Models
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1. Out-of-Distribution (OOD) Generalization
• Goal: Ensure LLMs can perform well on data that differs from their training distribution.
• Method: Evaluate performance on datasets with domain shifts (e.g., legal, medical, informal text) or adversarial examples. Use domain adaptation, data 
augmentation, or contrastive training.

2. Input Noise Robustness
• Goal: Handle noisy inputs like typos, slang, or code-switching (mixing languages).
• Method: Apply noise injection during training, use denoising autoencoders, or fine-tune on noisy datasets to make the model resilient.

3. Semantic Robustness
• Goal: Understand different ways of expressing the same meaning (e.g., paraphrasing).
• Method: Train on paraphrase datasets or apply semantic contrastive learning to align representations of semantically equivalent inputs.

4. Robustness to Prompt Variations
• Goal: Ensure consistent performance across similar but differently phrased prompts.
• Method: Evaluate across prompt templates, use prompt tuning, or train with instruction variations.

5. Robustness to Distribution Shift
• Goal: Adapt to test-time data that differs from training data.
• Method: Use unsupervised domain adaptation, meta-learning, or distributionally robust optimization (DRO) to generalize under shifts.

6. Multi-lingual & Cross-lingual Robustness
• Goal: Perform well across multiple languages or when switching between them.
• Method: Pretrain on multilingual corpora and evaluate on cross-lingual benchmarks.

7. Robustness in Instruction Tuning and RLHF Models
• Goal: Maintain reliable behavior when trained with human feedback or instruction tuning.
• Method: Use diverse and high-quality prompts, enforce reward model consistency, and evaluate robustness via human preference tests under varied 
conditions.
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Evaluation Type What It Measures

Task-based Task accuracy/performance

Perplexity Language modeling quality

Human evaluation Alignment with human judgment

Safety/bias Responsible AI behavior

Instruction following Ability to generalize to new instructions

Ø LLM Evaluation
Ashkan Jasour
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1. Task-Based Evaluation (Objective Performance)
Tests the model on benchmark datasets for NLP tasks.
Metrics: Accuracy, F1-score (Harmonic Mean of Precision & Recall), BLEU (Bilingual Evaluation Understudy), 
ROUGE (Recall-Oriented Understudy for Gisting Evaluation), EM (Exact Match), etc.

Task Type Example Benchmarks

QA SQuAD, TriviaQA

Summarization CNN/DailyMail, XSum

Translatioån WMT

Natural Language Inference (NLI) MNLI, ANLI

Code Generation HumanEval, MBPP

2. Language Model Evaluation (Perplexity)
• Measures how well the model predicts the next token in a sequence.
• Lower perplexity means better fluency and modeling of natural language.

3. Human Preference Evaluation
• Ask human annotators to compare outputs generated by multiple models.
• Often used in RLHF pipelines.
Metric: Win rate, human preference scores, Likert scale ratings.

4. Safety, Bias, and Toxicity Evaluation
Evaluate whether the model produces harmful, biased, or toxic content.
Tools & Datasets: RealToxicityPrompts, BiasBench, StereoSet, ToxiGen

5.  Instruction Following / Generalization
How well does the model follow complex or unseen instructions?
Example Benchmarks:
• HELMeval, BIG-bench, MMLU (Massive Multitask Language Understanding)
• ARC (AI2 Reasoning Challenge)

6. Holistic Evaluation Frameworks
Some common frameworks used to evaluate LLMs:

Framework Description

HELM Holistic Evaluation of Language Models (Stanford) — evaluates accuracy, robustness, fairness, efficiency, etc.

ELO rating Models are matched against each other like in chess; useful for human-vs-model or model-vs-model comparisons

MT-Bench Multi-turn evaluation for chat agents

Arena LLM-as-a-judge framework for comparing model outputs

Ø LLM Evaluation
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Library Purpose

torch Core deep learning framework (for VAEs, GANs, Transformers, Diffusion)

torchvision Preprocessing, datasets, pretrained vision models

numpy Numerical operations and data handling

scikit-learn Basic evaluation tools, clustering, PCA, etc.

matplotlib / 
seaborn Visualization and diagnostics

• These are base libraries for building and training generative models:

Model Type Libraries

VAE (Variational Autoencoder) torch (deep learning), pyro (probabilistic layers), matplotlib (for visualizing reconstructions, latent space)

GAN (Generative Adversarial Network) torch, torchgan (prebuilt GAN blocks and training utilities), wandb (to visualize training stability, e.g., loss 
curves, FID)

Diffusion Model torch, diffusers (model & pipeline), xformers (efficient attention mechanisms for large-scale diffusion 
models)

Transformer / LLM transformers (models & tokenizers), datasets (datasets like WikiText, Common Crawl), accelerate (multi-GPU 
training)

Multimodal Model (e.g. CLIP, BLIP) transformers, lavis or openclip (text-image alignment models)

• These are libraries for building and training various types of generative models:
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1. transformers (by Hugging Face)
• Application: Pretrained models (GPT, BERT, T5, CLIP, DALL·E Mini, etc.)
• Used for: Language generation (e.g., GPT-2, GPT-3, LLaMA), Text classification, summarization, translation, Multimodal models (e.g., text-to-image, image 
captioning)

2. diffusers (by Hugging Face)
• Application: Diffusion models like Stable Diffusion
• Used for: Image generation from text prompts, Training or customizing your own diffusion models, Supports DDPM, DDIM, etc.

3. torch (PyTorch)
• Application: General deep learning framework
• Used for: Building all kinds of generative models (GANs, VAEs, Transformers) from scratch, Custom training loops and fine-tuning, Widely used in academic and 
production Gen AI research

4. tensorflow / keras
• Application: Deep learning framework (alternative to PyTorch)
• Used for: Same as PyTorch: VAEs, GANs, RNNs, Transformers,  and user-friendly Keras APIs for rapid prototyping

5. Pyro / NumPyro
• Application: Probabilistic programming
• Used for: Variational Autoencoders (VAEs), Normalizing flows, Bayesian generative models

6. nflows
• Application: Normalizing flow models
• Used for: Density estimation, Generating structured samples from learned probability distributions (e.g., complex posteriors), Latent generative models

Ø List of Libraries:
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7. Magenta (by Google)
• Application: Music and art generation
• Used for: Music composition (MIDI), AI-generated art, Experiments with LSTM and VAE for melodies

8. TorchGAN
• Application: Generative Adversarial Networks (GANs)
• Used for: Prebuilt GAN architectures (DCGAN, WGAN, etc.), evaluation metrics (e.g., Inception Score, FID), Custom GAN training

9. OpenCLIP
• Application: Contrastive vision-language models (like CLIP)
• Used for: Image-text alignment, Text-to-image conditioning, Visual grounding and retrieval

10. LAVIS (by Salesforce)
• Application: Vision-language foundation models
• Used for: BLIP, ALBEF, and other vision-language models (e.g., captioning, VQA, retrieval)

11. stable-baselines3
• Application: Reinforcement learning
• Used for: Training agents that could be used in RLHF (Reinforcement Learning with Human Feedback), Could integrate with LLMs for aligned learning

12. Gradio / Streamlit
• Application: Interactive interfaces for Gen AI models
• Used for: Creating interactive web apps for model demos (e.g., text/image generation), Building UIs for ML apps without frontend code

13. xformers
• Application: Efficient attention layers
• Used for: Memory-efficient transformers, Essential in large models and diffusion pipelines

14. Taming-Transformers
• Application: Vector-quantized VAEs used in DALL·E and latent diffusion
• Used for: Discrete latent space learning, Compressing inputs before training generative models
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